
 1

Event-Driven Response Architecture for Event-Based
Computing

Vijay Dheap1,2 and Dr. Paul A.S. Ward1

1Department of Electrical and Computer
Engineering

University of Waterloo
Waterloo, Ontario, Canada, N2L
http://www.ccng.uwaterloo.ca/

2IBM WebSphere Everyplace Mobile
Portal Team

Research Triangle Park, N.C., USA

Abstract

Service-based computing is rapidly replacing
the more-traditional approaches to architecting
distributed systems. The critical advantage of
service-based architectures is that they require
only a specification of protocol, and not of API.
As such, they engender a significantly looser cou-
pling than prior techniques, thus facilitating seam-
less collaboration across systems and across
administrative domains.

A Service-Oriented Architecture (SOA) is a
middleware platform that provides a service-
based computing environment. The "publish-
find-bind" paradigm at the core of SOA enables
the development of service-provision software
separately from the development of service-
consumption software. Closer observation of
each aspect in this paradigm reveals that signifi-
cant developer involvement is still required to
assist the interaction between service provider and
consumer. Developers of service-consumer soft-
ware make the decision to employ a set of service
providers at development time. Some SOAs pro-
vide facilities to programmatically search, bind,
and even invoke services dynamically. However,
it is still assumed that knowledge of both service
providers and the service provided is known at
development time, or the client must supply

Copyright  2005 Vijay Dheap, Dr. Paul A.S. Ward,
and IBM Corp. Permission to copy is hereby granted
provided the original copyright notice is reproduced in
copies made.

highly-detailed information about services they
wish to use. This severely limits the possibility of
dynamic run-time interactions among service pro-
viders and service consumers.

In this paper we introduce EDRA, the Event-
Driven Response Architecture for service-based
computing. EDRA is a software framework that
provides an infrastructure to dynamically select
client-relevant service providers during run-time.
Information services selected by EDRA on behalf
of clients may send notification events in case of
changes in the service. In such cases, our runtime
will automatically process the notification based
on a selection of user-choice, system defaults, and
available action services. We have implemented a
prototype of our framework, and show its opera-
tion in the domain of airline services.

Index Terms—Event-driven systems, Web Ser-

vices, Service-oriented architecture.

1 Motivation
The EDRA project was undertaken using a sce-

nario-based development process. Concrete sce-
narios allow us to clearly acknowledge the
problems that exist. The generalized architecture
was then extracted by the specification of differ-
ent scenarios, and then factoring out the common
issues that all scenarios had to resolve. For the
purpose of this paper, we will limit the number of
scenarios we present to just a couple.

The first scenario we present is about Mary,
who plans to pick up her mother from the local
airport. Mary arrives at the airport 20 minutes
early only to discover that her mother’s flight has

 2

been delayed by an hour. Once at the airport,
Mary has very few options other than waiting.
Mary may have preferred to carry out other tasks
during that time, had she been aware of the flight
delay.

This scenario is a realistic problem when we
observe that approximately 1 in 4 flights are can-
celled or delayed [11]. Studies have also indi-
cated that increasing a traveler’s awareness of
delays or cancellations would improve their trav-
eling experience [4].

Analyzing this scenario, consider how Mary
could have been made aware of the flight delay.
One possibility is that Mary calls the airport for
information about her mother’s flight before leav-
ing for the airport. This option has three signifi-
cant drawbacks:
1. The onus is placed on Mary, and if she for-

gets, she still suffers the wait.
2. In general flights are not late. Mary should

not have to inquire to find out that “things are
normal.”

3. Mary will only be notified of the delay when
she makes the phone call and not when the
change actually takes place. This could have
two negative outcomes. First, if Mary calls
before any flight delay is identified, she still
suffers the wait. Alternately, she may call af-
ter the flight delay is identified but suffi-
ciently late that she cannot schedule or
complete another task.

A second possibility would be for the airline
company to set up a notification service. Mary
can then register to be notified in the event that
the flight is delayed or canceled. This option,
while addressing issues 2 and 3 of the above-
listed problems, still puts the onus on Mary to
register for the notification. If she forgets, she is
back to the original problem. If Mary does re-
member to register she must also remember to
deregister for the notification if her mother’s
plans change. This can discourage users from
using the notification service in the first place.
Another possibility is to have a third party such as
a travel agent register the notification on Mary’s
behalf at the time that the flight is booked for
Mary’s mother. Presumably the travel agent
would also deregister Mary from the notification
when her mother changes her plans. A third party
such as a travel agent might themselves become
overburdened with registering and deregistering
for notifications on behalf of all their clients. It

may also not be desirable for clients to allow third
parties to be privy to all their actions.

1.1 Increasing Complexity
The initial scenario about Mary that involves a

single notification request is relatively simple, and
can probably be registered by a human in a fairly
straightforward manner. However, the solutions
provided cannot scale to situations that can be-
come arbitrarily complex.

Consider the case of Simon in Connecticut for
three days on business. On his last day he gets
held up in a seminar and when it is over he real-
izes that he has to rush in order to make his flight
back home. On his way to New York it starts
raining and, as he approaches the airport, flights
are getting canceled because of the deluge. Upon
reaching the airport and giving up his rental car
Simon realizes that his flight is canceled. This
requires him to make his way into New York City
to find a hotel for the night, since the hotels near
the airport are all booked. He would either have to
rent another car or use a cab. He will also have to
make arrangements with the airline for an alter-
nate flight.

Analyzing this scenario, the following observa-
tions can be made. First, it should be clear that
the notification scheme has rapidly become too
complex for a typical human user to take advan-
tage of the system. Not only would Simon have
to register interest in the status of his flight, but so
would the car rental company, the hotel, and the
airline reservation system. This would still leave
open the problem of what to do in the event that
Simon has already checked out of his hotel and
needs a different hotel. Second, though an appli-
cation built to deal with this specific scenario is
not difficult, such an application would have no
further use beyond this immediate problem. The
invested development time cannot be justified.

The scenarios thus far introduced have been
travel-based, but the problem is not limited to that
domain. Any environment in which events trigger
changes or transitions in a prescribed schedule
can cause problems to occur to which appropriate
responses must be taken.

In analyzing scenarios from other domains, de-
scribed in our complete document [3], we discov-
ered three common features:
1. A person can develop a customized solution

in trivial scenarios (simple notifications, re-
petitive cases, etc.). However, most scenar-

 3

ios are either too specific to warrant the writ-
ing of an application or evolve over time. A
generic solution is called for.

2. An event-driven model applies in any envi-
ronment in which events trigger changes or
transitions in previously prescribed actions.
Normally a certain process is followed. In
the case of a divergence, various entities
should be notified pro-actively. Thus, the ap-
proach can be used in health-care manage-
ment, taxation systems, business-process
management, conference organization, etc.
However, for the purpose of this paper, we
will focus solely on the travel scenarios,
which are also the domain of our prototype
implementation (see Section 5).

3. Events cross administrative boundaries. Any
automated system to deal with events must
likewise be able to cross such boundaries.
This implies that the architecture must be
loosely coupled.

The Event-Driven Response Architecture
(EDRA) operates using a three-step process. It
maintains the client's current and future context,
and leverages that information to subscribe to
relevant subscription services. These services
will provide notifications when changes occur that
may influence the client's current or future context.
Upon receiving notifications, EDRA semi-
automates a response by either following pre-
defined policies or by providing a recommenda-
tion of relevant services that can be used by the
client to adapt to the changes.

2 Problem Definition
Given the motivations described above, we

then focused on the key constraints of any good
solution. These constraints have driven the de-
velopment of EDRA, and, as we describe the
EDRA architecture in Sections 3 and 4, we will
show how we have satisfied these constraints.

2.1 One Point of Data Entry
Information should enter the system once. The

management of this information should be auto-
mated so that it flows seamlessly within the sys-
tem for access and processing. Referring back to
the first scenario, Mary enters information about
going to the airport in her calendar and must sup-
ply it again if requesting a notification about up-
dates on her mother’s flight. This redundant

effort needs to be eliminated. Its elimination is
required for two reasons. First, it represents inef-
ficiency within the system. While modest in this
case, it can grow substantially in complex scenar-
ios. Indeed, this requirement of informing the
system multiple times of the same thing was one
of our strongest motivations in this work. Second,
and of greater significance, it can easily lead to
problems and/or inconsistencies. Specifically, the
requirement to enter the same information twice is
also the opportunity to generate an inconsistency
between different versions of what is supposed to
be identical data. Rather, we propose that the
information entered (once) is used to gain other
relevant information without forcing the client to
supply the same information multiple times.

We also note that a different type of redun-
dancy occurs if Mary had signed up for a notifica-
tion service either by herself or through a travel
agent. The responsibility for deregistering is left
up to the client who performed the action. Once
information becomes irrelevant for any reason it
should be removed from the system. Determining
when a piece of information becomes irrelevant
needs to be automated otherwise clients would
have to enter similar information twice.

The significance of this is that it simplifies, and
encourages adoption of, productivity mechanisms.

2.2 Generic Architecture
As was noted earlier, manual solutions require

considerable conscious effort on the part of the
client and customized solutions have severe limi-
tations. To be responsive we are required to iden-
tify possible sources of change and all the various
sources of information even though, generally,
significant changes are rare. Since each scenario
is unique, the development time invested to build
an application to deal with changes would out-
weigh its benefits. Therefore, the development of
an architecture that can be customized for various
application domains with the flexibility to address
specific scenarios is called for. The development
of such a generic architecture relies on abstracting
out the common functionalities. For each applica-
tion domain the architecture should support
“plugging-in” of customized modules. Once both
the generic platform and customizable modules
are assembled, the architecture should be capable
of handling various scenarios within that domain.

The significance of this concept is that it makes
the solution feasible and practical for adoption.

 4

2.3 Managing Client Context
The client delegates responsibility to the sys-

tem to monitor relevant changes in its environ-
ment and take appropriate responses when
possible and provide notifications otherwise. To
achieve this the system has to be aware of the
context of the client in the present and future so
that is able to find and use relevant information
sources. The management aspect comes into play
when a client-defined context needs to be altered
because of changes that occur in the client’s oper-
ating environment. A client’s operating environ-
ment is defined as all the properties that constitute
a context of the client, and it is the changes in
these properties that have to be managed. The
system makes use of the context to determine
relevant service partners. The system is then ca-
pable of guiding the client through the response
phase, either by automating the modification of
present and/or future context based on pre-
specified preferences, or through an interactive
process. Referring back to Simon’s scenario, the
system has to be aware of Simon’s present context
(“in a meeting”), as well as future context (“catch
a flight”) in order to ascertain the information that
would be relevant to him. Subsequently, when
relevant information signifies changes in the op-
erating environment of Simon’s future context
(“flight cancelled”), the system manages the re-
sponse. The response would be either to use
Simon’s pre-specified instructions or to guide
Simon through the response decision-making
process.

The significance of this concept rests in the fact
that it provides the client with a relevant struc-
tured response to reduce uncertainty.

2.4 Client Control of Context
This is an extension of the previous concept,

which stresses the importance of leaving clients in
control of their own context. The system will
monitor only the context the client explicitly
specifies, and even then does not share this con-
text with other entities. The client makes the ul-
timate decision about contextual alterations due to
changes in the operating environment.

The significance of this concept is that is pro-
motes the protection of a client’s privacy which
otherwise might limit the adoption of the system.

2.5 Certifying Services
Currently, in service-oriented interactions, enti-

ties rely on service descriptions to specify the
facilities offered by a service. However, there
may be cases when the services do not offer the
services they advertised. This can be caused ei-
ther by genuine errors or by malicious activity on
the part of service providers. This has not been
much of an issue in the past, since the service
provider and consumer were consciously estab-
lishing relationships. However, when we intro-
duce the ability to automate service-relationship
establishment, a mechanism to ascertain the valid-
ity of service providers is needed. An example to
illustrate this point: when accessing a particular
URL on the Internet which promises a certain
type of content a user is redirected to content of a
different type.

The significance of this concept is that it guar-
antees that automatic selection of service provid-
ers does not compromise reliability or
dependability.

3 The EDRA Approach
Figure 1 shows a high-level overview of our ar-
chitecture. The design elements within the EDRA
framework can be classified into three classes:
Periphery, Data Model, and Core. The EDRA
Periphery is a collection of gateways through
which a client can access the EDRA Core and is
also responsible for mapping external data to the
EDRA Data Model. The EDRA Data Model de-
fines the type, structure, and representation of
data in the EDRA Core. The EDRA Core itself
can be divided into three subclasses of design
elements. The first is the Data-Capture Portal,
which serves as the entry point for client access to
the EDRA Core. The Data-Capture Portal creates
an EDRA service instance for each client. Next is
the Context Container, which stores a client’s data.
Each Context Container is affiliated with a unique
Response Platform which automates the estab-
lishment of service relationships with external
entities. The Response Platform is also responsi-
ble for semi-automating appropriate adaptation
responses when necessary using data stored in the
Context Container. A more-detailed architecture
diagram is shown in Figure 2. We now describe
the subcomponents of our architecture.

 5

3.1 Periphery
The EDRA Periphery is necessary to manage

the bulk of interactions with the client by provid-
ing a single point of data entry. Client interac-
tions that deal with creating, updating, accessing,
and removing EDRA service instances are per-
formed via the EDRA Periphery. These types of
interactions can occur either manually by the cli-
ent or through client-invoked applications. For
example, a human (e.g., Mary) may use his/her
cell phone to access his/her EDRA service in-
stance or invoke an application (e.g., travel book-
ing application) to update information. The
EDRA Periphery handles manual interactions
separately from interactions via applications. The
Transcoding Manager is responsible for handling
gateways that deal with manual interactions and
the Compatibility Manager administers gateways
geared for interactions via applications. The
EDRA Periphery is also required to map informa-
tion from clients and other external sources (e.g.,
Applications) to the data model of the client’s
application domain.

3.2 Data Model
EDRA provides for loose coordination among

dynamically-interacting entities by requiring stan-
dardization of data. The EDRA Data Model is
tasked with maintaining the standardized type,
structure, and representation of data to facilitate
data processing within the EDRA framework and
communication with external services. This is
congruent to the standardization of data initiatives
currently being seen in various domains [5,6].
The EDRA Data Model is embodied as a number
of Industry Vertical Type Systems (IVTS). Every
IVTS captures application-domain-specific
knowledge that is not generally available outside
the industry segment. Each application domain
will have abstractions that generate requirements
on what the data is and what it means. For exam-
ple, in our travel scenario, data elements are used
to describe operations (e.g., flight) and generaliza-
tions (e.g., vacation, business trip). The EDRA
Data Model presumes that for each application
domain the data can be standardized into a model.
Thus, a “Flight” will be a defined type in an air-

EDRA
Core

EDRA Service Instances

EDRA
Data Model

EDRA
Periphery

External applications

Data Capture

Context
Container

Access devices

Response

Figure 1: EDRA Architecture

 6

line type system, specifying such things as origin,
destination, flight number, etc. The IVTS thus
provides an interface through which other compo-
nents of the framework can access data types and
formats of the application domain. The EDRA
Data Model also specifies the external services
that are consistent with the data model associated
with the client’s application domain.

An IVTS is best explained by discussing its
two components, the knowledge specification and
the EDRA operations interface, separately.

3.2.1 Knowledge Specification
Knowledge specification has multiple purposes,

but the most significant is the standardization of
data within the application domain. The first con-
struct we require in data standardization is the
definition of various “simple” and “complex”
types to assemble a vocabulary specific to the
application domain. Next, we use this vocabulary
to develop high-level abstractions that we refer to
as Entries. These high-level abstractions repre-

sent the activities that a client can undertake
within the target application domain [1]. The
cardinality of this set of abstract activities will
depend on the level of accuracy required. In the
process of recognizing these abstractions we can
also ascertain certain procedural relationships
among them. Entries capture the properties of the
context in which the client can carry out these
abstract activities.

The third aspect of the knowledge specification
is that it supplies a listing of all industry services
that adhere to the EDRA Data Model. This is a
critical feature of the knowledge specification that
treats services as data pertaining to the application
domain. The term service should be understood
using the SOA within which the EDRA frame-
work is deployed (e.g., Web Services). Every
industry service named in the listing provides a
set of Entries for which the service will be rele-
vant. This is our approach to building the infra-
structure for determining relevance between a
client’s context and available services.

Compatibility
Manager

Transcoding
Manager

EDRA
Periphery

Knowledge
Specification

O
p
e
r
a
t
i
o
n
s

I
n
t
e
r
f
a
c
e

EDRA
Data Model

Data Capture Portal

EDRA
Service Instances

Context
Container

Response
Platform EMM

Responder

Agenda

IS

AS
EDRA
CORE

Figure. 2: Detailed Architecture

 7

We categorize services as information or action
services. Information services (IS) are the ser-
vices that provide updates on changes to client’s
contexts (represented as Entries within EDRA).
Action services (AS) allow the client to modify
their current or future contexts. EDRA computes
the relevant information and action services based
on the client’s scenario (i.e., their schedule) and
the IVTS for the data items in that scenario.

The final construct of the knowledge specifica-
tion is to document industry-level contingency
policies for each Entry. A contingency policy is a
pre-specified plan for responding to anticipated
changes in the operating environment(s) of an
Entry. In our framework, contingency policies
are a set of event-condition-action rules. EDRA
also allows Entry-level contingency policies but
the client specifies these, whereas the industry-
level contingency policies are industry defaults,
used when the clients have not defined their own.

3.2.2 Operations Interface
The Operations Interface provides other com-

ponents of the EDRA framework with access to
the knowledge specification.

3.3 Core
The EDRA Core is the heart of the EDRA

framework. First, the EDRA Core allows new
clients to register for new EDRA service instances.
This allows the clients to enter current and future
contextual information for monitoring and man-
agement in the form of a partially-ordered sched-
ule. For example, in Simon’s business-travel
scenario his current and future context informa-
tion would be his plan for the day (from the meet-
ing drive to the airport to catch his flight using his
rented car). The EDRA Core then takes responsi-
bility for identifying and subscribing to the ap-
propriate information sources (external services)
that will provide client-relevant information.
Upon receiving notifications from these informa-
tion sources, the EDRA Core will either execute
pre-specified responses based on the information
received or notify the client. As described above,
the EDRA Core can be divided into subclasses of
design elements, Data Capture Portal, Context
Container, and Response Platform, which together
meet all the requirements placed on the EDRA
Core.

3.3.1 Data Capture Portal
The Data Capture Portal simply provides a

global access point to the EDRA Core. It handles
the initiation of every EDRA service instance for
a client and does this multiple times in a multi-
client deployment environment. Creating new
service instances involves associating a new Con-
text Container instance with a new Response Plat-
form instance.

3.3.2 Context Container
All the information that a client enters into

his/her EDRA service instance is stored in the
Context Container. The types of information
about a client that is stored in the Context Con-
tainer include registration information, current
and future context, a list of services that are rele-
vant to the client, and pre-defined policies for
responding to changes.

The most critical subcomponent is the Agenda.
The Agenda maintains the client’s current and
future context. Recall that the format of the data
stored about the client’s current and future context
is governed by the EDRA Data Model. The
Agenda therefore contains a set of Entries within
that model.

Dependencies among these Entries are captured
by the Agenda’s Dependency List, forming a par-
tial order. The agenda can then be interpreted as a
schedule for the client. This is critical, because to
preemptively employ services we need to know
the current and future operating environments
depicted as Entries to determine relevance. Fur-
thermore, the set of Entries in the Agenda and
their order allow the client to define any specific
scenario within the client’s application domain.

The client can specify pre-defined contingency
policies at the Agenda level and at the Entries
level. For each entry a client may specify what
the appropriate response should be for a given
notification received from a relevant information
service. The client also has the flexibility to de-
fine appropriate responses at the Agenda level,
possibly importing corporate contingency policies.

The Context Container has two Service Reposi-
tory subcomponents. One holds all information
services that have been subscribed to based on the
Entries in the Agenda. The second holds all the
action services that can be used to modify the
Entries in the Agenda. Each service stored in
either repository holds references to the set of
Entries for which it is being used.

 8

3.3.3 Response Platform
The IVTS provides the infrastructure to ascer-

tain the relevance between Entries and services.
The Response Platform now adds the infrastruc-
ture to subscribe to relevant information services.
The Response Platform is also the infrastructure
required to semi-automate client responses to no-
tifications received from subscribed information
services by identifying the relevant action services.

The Responder subcomponent manages the ac-
tivities of the Response Platform. It is responsible
for managing service relationships with relevant
information services and, when necessary, action
services. It also manages the execution of contin-
gency policies based on the event notifications it
receives from the Event Management Module.

The Event Management Module (EMM) sub-
component is responsible for establishing dy-
namic transient service relationships with external
information services. The EMM manages the
subscriptions and funnels the event notifications
back to the Responder.

4 Behavioral Design
We now trace through our travel scenario and

describe how the EDRA architecture determines
what services a client should subscribe to, and
what actions it must take in managing its current
and future contexts. The purpose of this section is
thus to identify and discuss the set of behaviors
that govern how the structural components dis-
cussed in the previous section operate and interact
to provide a cohesive solution.

4.1 Simulation of the Scenario
Before discussing the behavioral aspects of

EDRA we must first outline our simulation envi-
ronment that was used to develop these behaviors.
The first step was the creation of a sample IVTS
for the travel industry. For our purposes, we im-
plemented the EDRA Core as a hosted web ser-
vice that enables the client to create and manage
their EDRA service instances. The EDRA Pe-
riphery consists only of a Transcoding Manager
that presents an HTML-formatted user interface
for the EDRA Core web service. External infor-
mation and action services were also implemented
as web services. It should be noted that these
services are referenced by the IVTS we created as
required by the EDRA Data Model definition.

To simulate a scenario a discrete-event simula-
tion model was used. An external time web ser-
vice notified the EDRA Core web service and the
information services involved. This event trig-
gered a sequence of actions on the part of an in-
formation service or the EDRA Core web service.
For example, the flight status information service
was programmed to generate a flight delay status
update at a specific time event generated by the
time service.

With this simulation framework we can de-
scribe the behavioral design of the EDRA solution
using Simon’s travel scenario as an example.

4.2 Access
Clients first require the ability to access the

EDRA Core. Clients initiate the interaction when
they want to register for a new EDRA service
instance, or to add, update or remove Entries from
the Context Container associated with an existing
EDRA service instance. We also stated that client
access could occur either through devices or
applications. Providing clients with the flexibility
to interface with EDRA using their preferred
mode is fundamental to achieving one point of
data entry. It allows them to adopt the EDRA
solution without having to change their previous
processes. The Data Capture Portal of the EDRA Core lis-
tens for new connections. It manages a new con-
nection initiated by an access device through a
Transcoding Manager. A new connection can
also be initiated by a Compatibility Manager act-
ing on behalf of an application.

In our scenario, Simon accesses an EDRA ser-
vice to register. Likewise, his travel application
accesses the service to populate his EDRA service
instance with his travel plans. Finally, while on
the trip, Simon might need to access it to update
or verify aspects of his itinerary.

4.3 Registration
A client must be known to EDRA before it can

assign a service instance to that client. Registra-
tion behavior is responsible for governing this
type of interaction. The first access made by a
client to EDRA would be to initiate the registra-
tion behavior. Registration provides the process
for identifying the client so that future access for
that client’s EDRA service instance can be au-
thenticated.

 9

During registration EDRA will request infor-
mation about the client and this could vary for
each application domain. The information re-
quested by EDRA is defined at deployment time
of the EDRA solution. The minimal amount of
information required by EDRA is the client’s
name, possibly a unique identifier, and contact
information. In our business travel scenario,
Simon could be requested for his air miles card
number or his car rental loyalty card number.
This information will be used by the EDRA ser-
vice instance to interact with external services on
behalf of the client.

The registration process allows the client to
identify the external applications from which they
will transfer information to their EDRA service
instance in the future. An appropriate Compati-
bility Manager must be set up with these applica-
tions. As an example, Simon would identify the
travel application that constructs his travel itiner-
ary so that it can automatically transfer data to his
service instance.

4.4 Acquisition of Contexts
After registration, a client has an EDRA service

instance that can monitor and manage their cur-
rent and future contexts. It is necessary for the
client (of the EDRA service instance) to provide
EDRA a preliminary list of contexts in which the
client is expected to be over a period of time (in-
ternally represented as Entries). In our scenario,
this is Simon’s travel itinerary. Only a client, or
the owner acting on behalf of the client, has this
knowledge. An EDRA service instance can only
be preemptive in assisting the client upon know-
ing the intentions, or plans, of the client in the
form of their expected contexts. When the operat-
ing environments that constitute the client’s con-
texts change, EDRA can exhibit preemptive
behavior.

An EDRA service instance can acquire the pre-
liminary set of contexts for the client either from
specialized applications (i.e., Simon’s travel ap-
plication) or manual entry by the client/owner
using an access device. When entering new con-
texts manually, the Transcoding Manager uses a
form-based approach to guarantee that the data
fed into an EDRA service instance corresponds to
the IVTS of the application domain. Updates can
also be made to modify or remove a current or
future context in an EDRA service instance.

4.5 Initialization
This behavior defines how an EDRA service

instance prepares itself for monitoring and manag-
ing behavior after acquiring the client’s current
and future contexts. The main preparation that
has to be made is in the automatic selection of
relevant services based on the client’s current and
future contexts.

Since each context has an equivalence relation-
ship with an Entry in the IVTS for the application
domain, the knowledge specification of the IVTS
can be searched for services that are deemed rele-
vant to that Entry. Specifically, we can compute,
based on the type of the Entry, and its instantiated
values, what services are required. For example,
if Simon has booked a flight, the type information
of “flight” will include a notification services for
changes on that flight. The specific service to
subscribe to will be based on the specific flight,
which is in the instantiated data. Thus, if the
flight is American Airlines 892 from New York to
Boston, on June 19th, the American Airlines noti-
fication service will be subscribed to, with the
relevant parameters. Likewise, Boston weather
information will be subscribed to.

These relevant services will be maintained
along with the Entries representing the current
and future contexts of the client. Referring back to
Simon’s business trip, once his itinerary is entered
into his EDRA service instance, the Travel IVTS
is searched to find all the information and action
services that will be relevant to each of his con-
texts. Examples of these services could include
services related to flight information, weather,
hotel reservation, flight reservation, etc.

4.6 Monitoring and Manage-
ment

This behavior is realized through three sub-
behaviors. The first is the Information-Service
Relationship Establishment, which is responsible
for establishing dynamic service relationships
with relevant information services. This is the
means by which this EDRA instance subscribes to
the relevant information services selected during
initialization. The second behaviour is Channel-
ing Events, which directs updates received from
information services to appropriate contexts being
Monitored and Managed by the EDRA service
instance. The third is Transition, which defines
how an EDRA service instance internally models

 10

the transition from one context to another. For
simplification of the Transition sub-behavior we
have assumed the existence of start and end times
for each context. Together these sub-behaviors
provide the means to preemptively identify
changes in a client’s schedule.

 As Simon proceeds through his business
trip various things may change: the weather con-
ditions, flight delays, availability of rental cars,
and possibly even the duration of his meeting.
The relevant information services that are sub-
scribed to by the EDRA service instance manag-
ing and monitoring Simon’s business trip allows it
to build awareness. Events are published by these
information services so that an action can be taken
if necessary. It is also entirely possible that noth-
ing of significance changes in Simon’s trip in
which case the EDRA service instance simply
needs to mimic Simon’s transition from one con-
text to another (e.g., leaving the meeting and go-
ing to the airport).

The final behavior, Response and Adaptation,
defines how an EDRA service instance can pre-
emptively automate or semi-automate a reaction
to changes in contexts of the client.

4.7 Response and Adaptation
Figure 3 illustrates the decision-tree used for

response and adaptation behavior. We make use
of the responses stored in the contingency policies
for anticipated changes in the environment.

If, for example, Simon’s flight was cancelled,
and he maintained a contingency policy to re-
schedule the booking, then the following se-
quence of actions would occur:
1. The flight information service would report

the cancellation to Simon’s EDRA service in-
stance.

2. The Response Platform of the EDRA service
instance would attempt to find a contingency
policy (Entry level, Agenda level, and finally
IVTS level)

3. Execute the contingency policy, which in this
case involves a flight-reservation service.

4. Since the flight-reservation system is an ac-
tion service, Simon is notified of the situation
and provided with the option of different
flights (from the flight-reservation service)
that may suit his need.

5. Simon makes the ultimate decision to pro-
ceed with the reservation.

Construct
Response

Found

Found

Not Found

Found
Search Entry-level Contingency Policies

Search Agenda-level Contingency Policies

Search IVTS-level Contingency Policies

Event

Not Found

Not Found

 Involves AS services

Notify Client

Construct
Response

Execute Response

Figure 3: Response and Adaptation

 11

5 Prototype Implementation
As we have already noted in Section 4.1, we

have implemented a prototype of the EDRA core,
as well as a highly-simplified IVTS specification
of the travel industry so as to validate our archi-
tecture. The EDRA Core was written as a J2EE
application running under the IBM WebSphere
Application Server. Its operation is essentially as
described in Sections 3 and 4. The simplified
travel IVTS knowledge specification was created
using XML Schema-Definition Language. It pro-
vides an XML hierarchy for basic transportation
types (air, train, bus), together with various hotel
types. Within these categories are appropriate
subdivisions (e.g., airline carrier, locations, etc.).
Contingency policies, as well as information and
action services were similarly defined.

To drive this system we wrote a small browser-
based client, which acts as the EDRA Periphery.
This client allows registration of the trip, in lieu of
actual integration with existing client applications.
After the system is initiated, change from the pre-
scribed schedule is made possible by having the
information services alter the normal course of
events.

We note that our prototype is substantially lim-
ited. In particular, the Core is far from scalable,
operates the agenda as a simple dependency list,
and will only operate with a single IVTS. Integra-
tion with existing applications is lacking, and the
IVTS is far from comprehensive. However, within
the limitations of our prototype, we found it oper-
ated as required by our design, and serves as an
adequate proof-of-concept. In particular, it dem-
onstrates that automated selection of relevant ser-
vices is possible, and semi-automated responses
to generic scenarios are feasible.

Further details of our prototype are available in
the complete document [3].

6 Related Work
Semantic Calendars are an AI approach to solv-

ing the specific problem of scheduling meetings
among a number of entities. Restina Semantic
Calendar Agent [9,10], or RCal, is one such pro-
ject that aims to automate the selection of a mutu-
ally-convenient time for a meeting. Management
of the user’s calendar entries and automating re-
sponses to changes is not within the problem do-
main for RCal. RCal also has not focused on

specifying or taking into account the user’s con-
text in the process of scheduling meetings. Con-
textual information could play an important role
in the successful scheduling of meetings.

Paar and Tichy [8] outline their approach to in-
corporate semantic processing into Web Services
infrastructure. Their aim is to enable the selection
of service providers and to execute operations of
their selected services during runtime. One aspect
of the problem it does not address is that when
automatically selecting services, a level of trust
has to be developed between the service provider
and service consumer. When services providers
were selected during development time there was
a conscious decision made about trusting the pro-
vider. In interactive situations, where client in-
volvement in specifying search criteria (e.g.,
natural language description) and selecting ser-
vices is required, the advantages of this approach
would be mitigated due to its lack of proactive
behavior. This level of support, albeit with a
lower degree of accuracy, can be provided with-
out semantic annotations using syntactic matches,
à la Google.

Context Service [7] is a service-based approach
for integrating context-awareness into applica-
tions. The context service is a robust and modular
approach to designing context-aware applications.
Its aim is to find and manage the contextual in-
formation about subjects (people or objects) about
which its client is concerned. The context service
only retrieves context information when queried
by the application. Changes in the contextual
information are not proactively propagated, which
is required for event-driven applications. In addi-
tion, it does not take into account future contexts
of the client, which may be required by applica-
tions that need to respond to contextual changes
(e.g., if the flight is cancelled then Joe cannot
make the meeting). Context service is a middle-
man between context sources and applications
that need context information. Incorporating new
sources can only be done at development time,
which restricts the dynamic selection of informa-
tion sources during run time. The process of lev-
eraging the information delivered by the context
service is beyond the scope of this service and is
left up to the application invoking it.

The iQueue Project [2] was geared to address
the issues surrounding data composition in reac-
tive applications. It focused on optimizing aggre-
gation of information from various sources,
concentrating mainly on the quality of service

 12

offered by these sources for selection to meet
functional data specifications. In iQueue it is as-
sumed that the types of information required are
known, and a composer is generated to manage
the selected information types. The framework
does not outline the process in which the informa-
tion types themselves were selected. At present,
iQueue also does not identify the manner in which
the initial set of member-data sources a composer
uses is selected, and is the topic of future research.
Since application developers define the behavior
of composers at development time, they must also
predetermine the types of information they require,
reducing the applicability of this framework in
dynamic applications where relevant data sources
may change over time.

7 Conclusions
A set of basic objectives was established for the

Event-Driven Response Architecture that enabled
us to address the five research issues. Specifically,
they were:
1. a mechanism for automating the selection and

invocation of client-relevant services during
runtime;

2. non-intrusive and simplified information
gathering method;

3. a process to enhance the reliability and de-
pendability of automatically selected services;

4. a preemptive approach to identifying changes
that may influence the client’s current or fu-
ture actions; and

5. a mechanism that enables clients to use a
policy-based procedure to semi-automate re-
sponses to changes that may influence their
current or future actions.

The contributions of the Event-Driven Re-
sponse Architecture are a direct result of our ap-
proach to achieving the objectives stated above.
In particular, our four major contributions are:
1. proposing a minimum level of standardiza-

tion required in service-based computing;
2. outlining the infrastructure required to

achieve an understanding of relevance in
terms of the client;

3. defining the infrastructure for preemptive
identification and response construction for
changes that may influence the client’s cur-
rent or future actions; and

4. ensuring that the framework is customizable,
with the necessary flexibility to work across
various industries and application domains.

We have validated our contributions by imple-
menting a prototype of our framework. This pro-
totype has demonstrated that relevant services can
be computed when data types are standardized,
and responses to changes can be automated or
semi-automated, again based on industry-specific
standardization.

Moving forward there are two areas of the
framework were the simplifications can be re-
moved. First, given the significant role played by
the EDRA Data Model within the EDRA frame-
work, we want to explore the feasibility of creat-
ing an XML-based extensible language for
defining the knowledge specification. Standardi-
zation in defining the knowledge specification
would give us the ability to develop tools to rap-
idly model data in an application domain. While
considering this we may also want to delve into
how a single EDRA solution can be made to op-
erate using multiple IVTSs. This would enable
clients to use the same EDRA solution for sepa-
rate application domains they may operate in. For
example, a person may require EDRA to monitor
their contexts beyond just their work environment.
During the day, while at work, EDRA could also
monitor their home environment. If two different
IVTSs are defined one for the work environment
and one for the home environment then the EDRA
solution must be able to process Entries from both.
In particular, it must be able to resolve conflicts
that occur between the two environments.

The second challenge to be tackled is the repre-
sentation of a client’s current and future contexts
in the Agenda subcomponent of the Context Con-
tainer associated with an EDRA service instance.
This is one of the improvements we have alluded
to before. Entries in the Agenda should not have
to be just time-based, and we need a more robust
mechanism than the dependency list to describe
ordering relationships among Entries. Tracking
client transitions from one Entry to another would
also fall within the realm of this initiative. This
would prove very important in application do-
mains such as business processes or workflow
monitoring.

Acknowledgements
The authors would like to thank Dr. Arthur Ry-
man of the IBM Toronto Lab. for many produc-
tive discussions regarding this work.

 13

About the Authors

Vijay Dheap is currently a member of the IBM
WebSphere Everyplace Mobile Portal Team
based out of Research Triangle Park, N.C.,
USA. He graduated with a Masters in Computer
Engineering from University of Waterloo, Canada
and was a student researcher in the field of perva-
sive computing at IBM CAS Toronto.

Dr. Paul A.S. Ward is an Assistant Professor in

the Department of Electrical and Computer Engi-
neering at the University of Waterloo. His re-
search interests lie at the intersection of
distributed systems and networks. In distributed
computing his work focuses on distributed appli-
cation management, and more generally in de-
pendable distributed systems. In networks his
interest lies in wireless data networks, and more
particularly in ad hoc, wireless mesh, and delay-
tolerant networks. The combination of these inter-
ests has led him to study problems in mobile,
wireless, and pervasive computing. Prior to pursu-
ing his Ph.D. he worked in both the hardware and
software industries, covering the range from elec-
tronic parking meter design to developing the fast
parallel load utility for the DB2 database system.
He is a member of the IEEE, including the Com-
puter and Communications Societies, as well as a
Professional Engineer.

References
[1] Larry Arnstein, Chia-Yang Hung, Robert

Franza, Qing Hong Zhou, Gaetano Borriello,
Sunny Consolvo, Jing Su. Labscape: A smart
environment for the cell biology laboratory.
IEEE Pervasive Computing Magazine, vol. 1,
no. 3 (July-September 2002), pages 13-21.
IEEE Computer Society, 2002.

[2] Norman Cohen, Apratim Purakayastha, Luke
Wong, and Danny L. Yeh. iQueue: A perva-
sive data composition framework. Proceed-
ings of the Third International Conference on

Mobile Data Management, pages 146-153.
IEEE Computer Society, 2002.

[3] Vijay Dheap. EDRA: Event-Driven Response
Architecture for Service-Based Computing.
M.A.Sc. Thesis, University of Waterloo, Wa-
terloo, Ontario, Canada, 2004.

[4] Phillip Harper. Informed Travelers = Fewer
Flight Delays. Microsoft bCentral.
http://www.bcentral.com/articles/harper/129.
asp, accessed: May 2004.

[5] Health Level Seven, Inc. Health Level Seven.
http://www.hl7.org/, accessed: May 2004.

[6] Kentucky Department of Education. Data
Standardization.
http://www.education.ky.gov/KDE/Administr
ative+Resources/Data+and+Research/Data+S
tandardization/default.htm, June 2005.

[7] Hui Lei, Daby M. Sow, John S. Davis, II,
Guruduth Banavar, and Maria R. Ebling. The
design and applications of a context service.
In Mobile Computing and Communications
Review, vol. 6, no. 4. (October 2002), pages
45-55. ACM Press, 2002.

[8] Alexander Paar and Walter F. Tichy. Seman-
tic software engineering approaches for
automatic service lookup and integration. In
Autonomic Computing Workshop: Active
Middleware Services (June 2003), pages 103-
111. IEEE Computer Society, 2003.

[9] Terry R. Payne, Rahul Singh, and Katia Sy-
cara. Calendar agents on the semantic web.
IEEE Intelligent Systems, vol. 17, no. 3,
pages 84-86, May/June 2002.

[10] Terry R. Payne, Rahul Singh, and Katia Sy-
cara. RCal: A Case Study on Semantic Web
Agents. In The First International Joint Con-
ference on Autonomous Agents and Multi-
Agent Systems, ACM Press, 2002.

[11] US House of Representatives. Flight Delays
and Cancellations Continue as Major
Sources of Customer Dissatisfaction. Wash-
ington, 2000, Accessed: May 2004.
http://www.house.gov/transportation/aviation
/issues/delays.pdf.

