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ABSTRACT

Today’s enterprise software systems are mission criti-
cal. Ideally they must run continuously, correctly. To
do otherwise costs money. However, system failures will
still occur. Continuous system monitoring can reduce the
time to diagnosis, but comes at the cost of reduced sys-
tem efficiency. One alternative, partial system monitor-
ing, is to monitor at a minimal level to determine sys-
tem health, and adaptively increase the monitoring level
if some problem is suspected. Given the complexity of
modern enterprise servers, rather than develop an explicit
model based on system knowledge, we employ simple
statistical techniques to identify relationships in the mon-
itored data. These relationships are used to characterize
normal operation and, in the event of anomalies, iden-
tify areas that need more monitoring. In this paper we
motivate the need for adaptive monitoring, we describe
an approach to drive this adaptation, and present prelim-
inary results of our adaptive-monitoring prototype.

1 INTRODUCTION

Many businesses today rely heavily on software systems
to support operations and provide services to a large user-
base. These systems are generally expected to be oper-
ational around the clock and provide services to a large
user-base. Failures in this context can cost a great deal
either in the form of lost opportunities or penalties for
failing to meet service-level agreements. These systems
comprise a set of system and application software, each
of which fulfills specific needs. Each software can it-
self be composed of many parts and components. A
software system to support an online store, for exam-
ple, includes one or more end-user applications, operat-
ing systems, database servers, HTTP servers, application
servers, workload routers, etc.

Enterprise information systems are required to meet
stringent reliability requirements. Proper systems man-
agement is thus of utmost importance. However, man-

agement has become hard as these systems are increas-
ingly large, have complex structure, and are frequently
updated. The composite and componentized structure of
these systems entails an overwhelming number of enti-
ties that need to be taken into consideration for manage-
ment purposes. In addition, relationships among parts
and components need to be understood because slight
changes may lead to important disturbances [8].

Despite the availability of large amounts of informa-
tion regarding many aspect of modern software systems,
effectively managing their operation is hard. Each soft-
ware in a system can be monitored via numerous per-
formance, activity, resource utilization, and state-related
metrics. Sources include log files, trace files, event noti-
fications, existing instrumentation and related interfaces,
dynamic instrumentation, €tCc. These systems can gen-
erate an overwhelming amount of information that can
be costly to collect [6] and difficult to handle and ana-
lyze [9]. Traditionally, the problem of system manage-
ment has been tackled by employing enough human ex-
perts who are effective in finding relevant information
and reasoning under uncertainty. The state of the art in
systems monitoring is that a small set of important infor-
mation is always monitored; the rest is only collected
when system administrators deem it necessary. Cur-
rent tools help administrators sort through large amount
of information, but do not eliminate their involvement.
This state of affairs calls for novel approaches to sys-
tems management. An effort in this respect is Autonomic
Computing [9]. Many aspects of Autonomic Computing
such as self-configuring, self-healing, self-tuning, self-
protecting are dependent on effective system monitoring.

In this paper we motivate the need for automated
adaptive monitoring. The monitoring system should
continuously assess current conditions by observing the
most relevant data; it must promptly detect anomalies;
it should help identify root-causes of problems. For an
intelligent monitor to observe the most relevant data, it
must adapt (i.e., it should dynamically enable collection



and analysis of information that would be most useful in
reducing uncertainty). It should adapt to prevailing con-
ditions and collect just enough information to ensure cor-
rect and efficient operation of the system under observa-
tion. Collecting less information not only reduces the ad-
verse effect of measurement on system performance, but
also reduces the overhead associated with storing, trans-
mitting, analyzing, and reporting information. Adaptive
monitoring also limits the probe effect on the measure-
ment [7]. For example, we are likely to get more precise
values of some pertinent metrics if others are not col-
lected. Thus, the system can run in conditions as similar
as possible to the minimally instrumented version.
Today there is no self-adaptation of monitoring. Sig-
nificant time is spent detecting problems. System ad-
ministrators manually adjust when and what information
needs to be collected. They may fail to correctly assess
problematic situations due to limited knowledge and may
lack the ability or availability to respond promptly. In-
creasing the number of administrators is expensive and
does not necessarily solve the problem. Skilled and
knowledgeable administrators are in short supply.

2 BACKGROUND

To support scalable and distributed business applications,
ease of development, and software re-use, standardized
component-frameworks have been developed and widely
adopted. These frameworks provide commonly-needed
services such as directory, transactions, remote commu-
nication, security, €tC. and implement features such as
resource-pooling, multi-threading, synchronization, €etc.
Such services and features are bundled in server plat-
forms and shared by the various applications.

One of these frameworks is Java 2 Enterprise Edition
(J2EE [3]). J2EE specifies application-program inter-
faces (API) and interactions for basic services needed for
distributed and enterprise computing. It also defines in-
terfaces, roles, and deployment details of components in
the framework. A J2EE application is a combination of
many specialized components. Some components such
as Servlets and Java Server Pages (JSP) handle the pre-
sentation logic. Others such as Enterprise Java Beans
(EJB) deal with the business logic. The J2EE server,
comprising component containers and various services,
provides the common runtime environment for individ-
ual J2EE applications.

We can monitor most of the components of any ap-
plication running on a J2EE server. Information on web
components, such as servlets, may comprise the num-
ber of requests being served over time or at any given
instance, number of errors encountered, response-time,
etc. As far as enterprise beans are concerned, depending
on the type of bean, different information can be gath-
ered. In general, one could monitor how many instances

of each bean have been created, number of active beans,
number of free beans available in various pools, aver-
age response-time per bean, number of times the various
methods of a bean are called, number of times a bean is
persisted, time taken to persist a bean, €tc. Interestingly,
information as detailed as the time taken by a particular
method of a bean can be measured.

The primary tool for learning and anomaly detection
used in this work is linear regression. Regression analy-
sis attempts to find a model that relates a dependent vari-
able to one or more independent variables. In the case
of simple linear regression, model parameters (i.e., slope
and intercept) can be estimated by fitting a line that mini-
mizes the sum of square of the difference between actual
and estimated values. The correlation coefficient can be
used to check how well the regression line fits the data.
This coefficient varies between -1 and 1. The closer it is
to zero, the worse is the fit. More details on linear regres-
sion can be found in any introductory book on statistics.

3 RELATED WORK

Significant recent research work has focused on prompt
detection and diagnosis of problems in enterprise sys-
tems (€.9., [10]). The proposed approaches often assume
that detailed system-related data is available. However,
in practice, such data is typically too expensive to collect.

Seltzer and Small [13] have looked at adaptive mon-
itoring in the context of extensible operating systems.
Likewise, it has been investigated in the context of dy-
namic code instrumentation for monitoring program ex-
ecution flow and performance (e.g., [5, 11]).

Irina et al. [12] describe an approach to inferring sys-
tem state by adaptively selecting and executing the most
informative probe. The authors use Bayesian networks
to encode the relationship between tests’ outcomes and
states of nodes in the system. The test results are then
used to update the model parameters, which can be used
to query the belief on the current system’s state.

Our approach has some similarity to that of Brown et
al. [4]. Their goal, however, is to infer dependencies be-
tween components of a system by actively inducing per-
turbation in the system. They also use statistical correla-
tion to learn the strength of the dependencies identified.
In contrast, our work assumes that some level of pertur-
bance always exists in modern software systems due to
their dynamic nature. Moreover, we use regression esti-
mates to predict values of metrics using other metrics.

4 OUR APPROACH

The continuous observation of runtime metrics related to
activity, state, load, or performance of a software system
gives rise to time-series data. Analyzing this data to dis-
tinguish deviations from normal behaviour is non-trivial.



Modeling the metrics individually is difficult as they are
frequently non-linear. Rather, we propose to model them
in relation to other metrics, especially metrics that are
closer to each other in sequences of dependencies. This
makes modeling simpler by obviating the need to con-
sider many sources of non-linearity.

Our approach consists of four phases: system mod-
eling, minimum monitoring, adaptive monitoring, and
fault diagnosis. In the system modeling phase we do
three things. First, we determine all pairs of metrics orig-
inating from distinct subsystems that are linearly corre-
lated. This may be performed by maximal system moni-
toring for a period of time, collecting sufficient quantity
of data to allow for cross testing of all pairs. In practice,
we use a priori knowledge to identify dependence among
subsystems at a high level. Knowing high-level depen-
dencies reduces the number of metric-combinations that
need to be tested for correlation. Second, we estimate
regression parameters for the correlated pairs. Initially
this is performed together with the first step, though as
the software executes for a long period of time we have
found that parameters’ estimates need to be updated.
Third, a small number of low-collection-cost metrics
needs to be identified and modeled individually. These
metrics act as basic health indicators, enabling us to de-
termine when are where to increase monitoring levels.

In the second phase, monitoring is reduced to a mini-
mal level, collecting only those health-indicator metrics
identified in phase one. Anomaly detectors are associ-
ated with each such health indicator. When an anomaly
is found, the adaptive monitoring logic takes control, and
the system enters phase three. Monitoring is increased
such that metrics known from phase one to be correlated
with the anomalous health-indicator metric are retrieved.
Now the data collected maps to a set of metric-pairs.
When monitoring metric-pairs, an anomaly occurs when
the predicted value of the dependent metric noticeably
deviates from what the linear regression model predicts.
‘When such anomalies are found, metrics correlated with
the out-of-bound metric are collected and checked for
anomalies. Thus the process continues recursively.

Finally, the process of increasing the monitoring level,
i.e, retrieving more metrics, is stopped either when there
is sufficient evidence to identify a faulty component or
when no more evidence can be gathered even though no
fault has been found. In the latter case, a false positive
has occurred, suggesting that the monitoring system may
need parameter adjustment. The stopping criteria can be
implemented in different ways and is a research problem
which we are trying to address.

In phase four, diagnosing the fault, we rank compo-
nents according to the number of times their metrics
are reported as being out-of-bound. Components that
are higher-ranked are more likely to be the cause of
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Figure 1: Subsystems dependency for identifying corre-
lated metric-pairs

the observed anomalies for two reasons. First, a faulty
component is likely to exhibit multiple aberrant forms
of behaviour, which may cause it to be reported multi-
ple times. Second, because most components have cor-
related metric pairs with multiple other components, a
faulty component will be reported many times. Informa-
tion from different metrics is thus corroborated, reducing
the likelihood of a wrong diagnosis.

The environment of the target system changes often
(e.g., surge in workload). As such, regression parameters
learned initially may no longer apply after some time.
These parameters can periodically be refreshed by sam-
pling values of the different metrics in a way that does
not heavily impact performance. For example, we could
iterate over the available metrics in a round-robin fashion
such that in each period a subset of metrics are collected
and the corresponding parameters adjusted. When one
cycle completes all metrics would be refreshed.

5 IMPLEMENTED PROTOTYPE

We have implemented a prototype based on our pro-
posed approach. Our experimental setup consists of a
DB2 UDB 8.1 database server, a WebSphere 5 Appli-
cation Server (WAS), a custom-made workload genera-
tor, and the prototype monitoring engine, each executing
on a separate machine. Running the monitoring engine
on a separate machine reduces its impact on the perfor-
mance of the target system. All machines are connected
via a Gigabit LAN. We use the Trade 3 [1] benchmarking
end-user application, which implements an online stock
brokerage system comprising Servlets, JSPs, and EJBs.

The monitoring engine collects data available from
the Performance Monitoring Interface (PMI) of WAS.
This data reflects activity, state, errors, and performance
of components and services in the server. The monitor
polls for data it needs every 10 seconds. The WAS ver-
sion used only provides coarse-grained control over what
metrics are collected. Five levels of monitoring are avail-
able: None, Low, Medium, High, and Maximum. Each
level corresponds to a set of metrics, including those at
lower levels. A typical J2EE application has three impor-
tant subsystems: a Web module containing Servlets and
JSPs; a Bean module containing different types of EJBs;
a JDBC driver dealing with connection to the back-end
database server. Fig. 1 depicts the dependencies among
these subsystems for Trade 3.



Using previously collected data and following the de-
pendency depicted in Fig. 1, we determine which pairs of
metrics are linearly correlated. Each such pair originates
from two connected subsystems. Only metric pairs with
a strong linear correlation are considered. We checked
correlation between metrics and estimated linear regres-
sion parameters using the R [2] statistical package.

5.1 OPERATION OF THE MONITORING ENGINE

At startup, the monitoring engine is provided with the list
of correlated metrics determined above. The monitoring
engine sets the monitoring level to maximum for all met-
rics related to the three subsystems. It then begins to esti-
mate linear-regression parameters for correlated metrics.
We use an estimation period that is deemed sufficient to
obtain stable parameters. This period defines a sliding
window over which estimates are calculated. We wait
for the system operation to reach a steady state. When
this happens, the monitor sets the monitoring level to
minimum. At this level, we monitor only response-time
of, and errors from, web components (i.e., Servlets and
JSPs), which act as our health indicators. This maps to
a monitoring level of Medium for the Web module and
None for the other modules.

The health-indicator anomaly detectors are defined as
follows. In case of response-time metrics, we maintain
averages over a fixed-size sliding window. An alarm is
raised when an observed value exceeds the running aver-
age by more than a certain factor. In the case of Servlet
errors, when the observed value exceeds a certain thresh-
old, an anomaly is declared.

When a health-indicator anomaly is detected, the mon-
itor sets the monitoring level to Mediumfor all three sub-
systems. Using the data thus collected, it checks whether
observations made at the present monitoring level are
within reasonable bounds of those predicted by the mod-
els learned. If they are not, the monitor makes use of
rules to try to identify the subsystem responsible for
the problem. At each step, we make use of four mea-
sures: the number of Web-Bean pairs presently avail-
able (W B 4), the number of Web-Bean pairs where the
observed value is out-of-bound (W Bp), the number of
Bean-JDBC pairs presently available (BJ4), and the
number of Bean-JDBC pairs where the observed value
is out-of-bound (BJp). We then compute two ratios:
WBr = WBo/WB4 and BJg = BJo/BJa. If
W Bp is higher than a threshold A and BJpg is lower
than a threshold B, then we attribute the problem to the
Web module. This rule is based on the reasoning that
a problem in a web component will mostly affect the
Web-Bean pairs. A problem in a web component can
indirectly affect Bean-JDBC pairs. Threshold B is used
to take these effects into consideration. If BJg is more
than threshold B and W Bpy is less than than threshold
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Figure 2: Example of a correlated metric-pair

A, then the JDBC subsystem is considered as the source
of the problem. If both W Br and BJg are higher than
a threshold B, then the Bean module is considered to be
causing the problem. This is because problems in beans
affect both Web-Bean and Bean-JDBC pairs. If none of
these rules apply, the monitor increases the monitoring
level for all three parts of the application. It then com-
putes the ratios mentioned above and tries to apply the
above rules. Once a subsystem is assigned responsibil-
ity for the anomaly, or the maximum level of monitoring
is reached, problem determination ends. Otherwise, the
monitor steps up the monitoring level.

The adaptive monitoring logic of the prototype dif-
fers from the proposed approach because of limitations
in the granularity of monitoring available in the current
testbed. Instead of finding metrics correlated with those
that are out-of-bound, we simply increase monitoring so
as to have more metric-pairs to analyze. We empirically
derived thresholds A and B. More work is needed to
define these objectively and in a more systematic way.

In order to find more detailed information than
subsystem-level, we implemented the component-
ranking approach described in Section 4. With this ap-
proach, we can easily shortlist components that are likely
to be causing problems.

5.2 EXPERIMENTS

As a first step of experimentation, we collected most
available metrics from the web module, bean module,
and JDBC component of the Trade3 application over a
period of roughly 24 hours. We then ran a set of scripts
to identify correlated pairs. Fig. 2 presents an example
of two linearly correlated metrics.

In order to evaluate the effectiveness of our alarm trig-
gers as well as the monitor’s responses to alarms, we
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Figure 3: Example of output printed by the Monitoring
Engine

injected a number of synthetic faults in the Trade3 ap-
plication and created other anomalous conditions. Our
experiments were mainly based on two types of fault in
two locations. The types were delay and exceptions. Ex-
ceptions were controlled by specifying the probability of
occurrence of an exception. These faults can be added
to one of the Servlets, JSPs, or EJBs. Delays were con-
trolled specifying the duration. Fault were injected either
in the application (i.e., in one of the Servlets, JSPs, or
EJBs) or in the environment. Faults injected in the envi-
ronment focused on either CPU consumption on one of
the machines or simulated network errors.

In most experiments the anomalous component perco-
lated to the top three of the list of potentially problem-
atic components. Attributing the problem to a particular
subsystem using rules described earlier, however, was
trickier. While initially the engine correctly pinpoints
the problematic subsystem, as errors propagate, it makes
mistakes. Figure 3 depicts the output from the user in-
terface of the Monitoring Engine after having introduced
exceptions in a component of the t r adehone webpage.

Based on these preliminary experiments, we have val-
idated the basic approach, while identifying a number of
shortcomings and research questions which we expect to
address. First, our approach does not allow for monitor-
ing of metrics that are not linearly correlated with other
metrics. We have observed that such metrics do exist.
Second, all metrics are not equal. Some metrics are more
important than others insofar as they affect more metrics
than others. As such, diagnosis based on the number of
times a metric is reported as being anomalous does not
always shortlist the faulty component. Third, when mon-
itoring is reduced to the minimum level, it is possible for
the environment to change. We have yet to implement
parameter updating as proposed in Sec. 4.

6 CONCLUSIONS AND FUTURE WORK

In this paper we argue that adaptive monitoring is critical
for effective systems’ management. We propose an ap-
proach for monitoring component-based enterprise sys-
tems using statistical correlation between metrics. We
describe a prototype that partially implements our ap-
proach and report early results from our experience.

We are porting the prototype to use a testbed with a
more recent version of the application server, which al-
lows for fine-grained control of the collection of metrics.
As far as the approach is concerned, we are looking at
ways to accommodate metrics that do not correlate with
others, keeping learned relationships up-to-date, incor-
porating metrics’ weight in the diagnosis, and dealing
with changes in system-state that result from the occur-
rence of anomalies. In the long run, we would like to
move beyond simple linear regression and use other tech-
niques that would capture more relationships between
metrics. Moreover, this work only considers a single ap-
plication. Application servers can support many applica-
tion at a time. As such, we need to extend the proposed
approach to cater for such cases.

REFERENCES

[1] Trade3.  http://www3.ibm.com/software/webservers/appserv/-
benchmark3.html.

[2] The R Project for Statistical Computing. http://www.r-
project.org/.

[3] Sun Microsystems Inc. J2EE 1.4 Platform Specification. Avail-
able at http://java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf.

[4] BROWN, A., KAR, G., AND KELLER, A. An active approach to
characterizing dynamic dependencies for problem determination
in a distributed environment. In Proc. of IEEE Int’l Symposium
on Integrated Network Management (May 2001), pp. 377-390.

[S] DMITRIEV, M. Profiling Java applications using code hotswap-
ping and dynamic call graph revelation. In Proc. of the 4th int’l
Workshop on Software and Performance (2004), pp. 139-150.

[6] Fox, A., AND PATTERSON, D. Self-repairing computers. Sci-
entific American (June 2003).

[7] GAIT, J. A probe effect in concurrent programs. Software —
Practice and Experience 16, 3 (Mar. 1986), 225-233.
[8] GRIBBLE, S. D. Robustness in complex systems. In Proc. of the
8th Workshop on Hot Topics in Operating Systems (2001).
[9] KEPHART, J., AND CHESS, D. The vision of Autonomic Com-
puting. IEEE Computer 36, 1 (January 2003), 41-50.
[10] KICIMAN, E., AND ARMANDO, F. Detecting application-level

failures in component-based internet services. IEEE Transactions
on Neural Networks 16, 5 (September 2005), 1027-1041.

[11] MIRGORODSKIY, A. V., AND MILLER, B. P. Autonomous anal-
ysis of interactive systems with self-propelled instrumentation. In
Proc. of the 12th Multimedia Computing and Networking.

[12] RisH, 1., BRODIE, M., MA, S., ODINTSOVA, N., BEYGELZ-
IMER, A., GRABARNIK, G., AND HERNANDEZ, K. Adaptive
diagnosis in distributed systems. IEEE Transactions on Neural
Networks 16, 5 (September 2005), 1088—1109.

[13] SELTZER, M., AND SMALL, C. Self-monitoring and self-
adapting operating systems. In Proceedings of the 6th Workshop
on Hot Topics in Operating Systems (1997), p. 124.



