
Third-Party Flow Control∗

Dushyant Bansal and Paul A.S. Ward
Shoshin Research Group

Department of Electrical and Computer Engineering
University of Waterloo

{dbansal,pasward}@shoshin.uwaterloo.ca

Abstract

Flow control is critical to the efficient operation of In-
ternet Service Providers network equipment. In particular,
the ability to effectively shape traffic can reduce cost and
improve overall customer satisfaction. While such traffic
shaping is typically performed by an inline traffic shaper,
there are a number of practical cases in which such an in-
line approach is not feasible. In particular, an inline traffic
shaper may reduce reliability or simply be against ISP pol-
icy. In these cases third-party flow control is required.

Third-party flow control allows the shaper to see all traf-
fic and to inject new traffic into the network. However,
it does not allow the shaper to remove or modify existing
network data. Within these limitations we study two tech-
niques for flow control, triple-ACK duplication and zero-
window-size acknowledgement. We provide analytical jus-
tification for why these techniques are promising. In addi-
tion, we demonstrate, via simulation, that the zero-window-
size technique can reduce bandwidth consumption by 40%,
while the triple-ACK duplication can reduce it by up to
85%. These techniques thus offer the possibility for signifi-
cant flow-control capabilities by a third-party traffic shaper.

Keywords: TCP, flow control, congestion control, third-
party, peer-to-peer.

1. Motivation

Excessive packets sent in a network create long packet
queues at routers, which may lead to buffer overflows, re-
sulting in packet drops. This results in retransmissions,
which consequently reduce the goodput. Further, Internet
Service Providers (ISPs) are typically billed according to
their peak throughput, and thus desire to limit it, while still
providing good service to their clientele. ISPs which man-

∗This work was supported in part by Sandvine Inc. and NSERC

age their traffic typically install a traffic shaper inline with
their router. This shaper may form part of newer routers.
This mode of deployment is shown in Figure 1.

Figure 1. Inline Traffic-Shaper Deployment

However, in some cases, it is not desirable to install an
external vendor’s traffic shaping box inline with the router
for fear of losing all connectivity if that box fails. An alter-
native is to install the traffic shaper in parallel to the router
equipment, as shown in Figure 2. A traffic shaper in this
scenario gets copies of all packets and is able to inject pack-
ets into the traffic stream but is not able to control the flow of
existing packets. Such a third-party deployment mitigates
the problem described above by decoupling router failure
and operation from the reliability of the traffic shaper.

Figure 2. Third-Party Shaper Deployment

1

In this paper we design and evaluate techniques for third-
party traffic shaping. Since most Internet traffic runs over
the Transmission Control Protocol (TCP), our work deals
only with solutions based on TCP traffic. This work was
motivated by file-sharing over peer-to-peer (P2P) networks,
which is the greatest consumer of Internet bandwidth today,
and thus we assume that the TCP flows we wish to control
are long lived.

The remainder of this paper is organized as follows. In
Section 2 we describe the basics of TCP, and existing tech-
niques for flow control. We then develop two novel ap-
proaches for third-party TCP flow control based on repli-
cating acknowledgement packets, either with zero-window
size, to force flow control, or threefold acknowledgement
duplication to force congestion control. In Section 4 we
evaluate the efficacy of our approaches using the ns-2 sim-
ulator [13], demonstrating that the techniques can reduce
bandwidth consumption of a TCP flow by up to 85%. We
conclude by describing what work remains for this tech-
nique to be applicable for deployment.

2. Background

We now describe the operation of TCP and discuss ex-
isting methods devised to control TCP traffic.

2.1. Basic mechanics

TCP is a byte-stream-based connection-oriented proto-
col that uses sliding windows to provide reliability, in-order
delivery of segments to the receiving application, flow con-
trol, and congestion control. A sliding window is essentially
a window of data segments that are to be transmitted or re-
ceived. Given that a sender requires an acknowledgement
(hereafter, ACK) for every segment it transmits, the sender
can only have as many segments unacknowledged as the
sender window allows. It stops sending segments if no seg-
ment in its current window has been acknowledged yet. As
ACKs arrive, the sliding window moves forward, as shown
in Figure 3. This provides for reliable communication.

Given that a receiver acknowledges all segments it re-
ceives (cumulatively or individually), the receiver can only
accept an additional receiver-window worth of segments be-
yond the last segment it has acknowledged. Anything out-
side this window is dropped. As the receiver application
consumes the bytes, the receiver window becomes freed.
This is shown in Figure 3. To prevent wasteful transmis-
sions, the TCP receiver advertises the amount of space it has
available to the sender as part of the header of every ACK.
This informs the sender how many more bytes the receiver
can accept at that moment. The sender will never send more
data than the receiver’s advertised window, thus implement-
ing flow control. It may, however, send less, according to

Figure 3. TCP sliding window protocol [12]

the sender’s understanding of the congestion level in the
network.

2.1.1 Congestion window

The basic model of TCP is called the Tahoe version. The
following is a simplification of how TCP Tahoe operates.
TCP Tahoe initializes its sliding window at 2 segments
and increments the window size by 1 for every ACK re-
ceived, until the window size reaches the congestion thresh-
old. This mode of operation is called slow-start. Thereafter,
the window size increases by 1 segment after an entire win-
dow of data is acknowledged.

To detect congestion in the network, the sender uses a
timeout mechanism to wait for acknowledgements from the
receiver. If the sender times out waiting for an ACK for a
packet, it infers that the packet is lost and assumes that it is
because the network is congested. The sender retransmits
the packet, halves its congestion threshold, and resets the
congestion window to its initial setting, which would be 2
segments. The sender starts again in slow-start mode.

2.1.2 Fast retransmit and recovery

Not all packet loss is caused by congestion. Some packet
loss is simply a random occurrence within the network.
However, the time-out mechanism requires that the sender
has to wait for the entire time-out period before it realizes
that a packet has been lost, and it assumes the cause of loss
is congestion. A modification adopted to circumvent this
problem was to use fast retransmit, and it has been imple-
mented in TCP Reno 1. In this mechanism, if the receiver
receives a data packet out of order, it sends out an ACK for

the last data packet received in order, effectively duplicating
the ACK for that last in-order packet. When three duplicate
ACKs are received the sender infers that the data packet
following that which has been acknowledged four times has
been lost in the network due to congestion. It immediately
retransmits that packet, sets its congestion threshold to half
the current congestion window, and resets the congestion
window back to 2.

The assumption of congestion is unnecessarily pes-
simistic. The data packet that was acknowledged 4 times
in a row was not necessarily lost due to network congestion
but due to physical loss. This optimistic assumption led the
next version of TCP, Reno 2, to skip slow-start, and only
set the congestion window to half its current value rather
than resetting it all the way to 2. This approach is called
fast-recovery. Reno 2 is the defacto standard TCP imple-
mentation in use today.

2.2. Existing techniques for flow control

Most existing techniques for TCP flow control require
inline traffic control or modification of the TCP installed
on the end nodes. As such, these methods are not directly
applicable in third-party deployment since the third-party
shaper has no ability to change packets. However, we de-
scribe these techniques, partly for completeness, but mostly
to detail what parameters must be controlled by the shaper,
and how they might be controlled.

2.2.1 In-Network flow control

An inline traffic-shaper has control over all the packets pass-
ing through that router. It can modify the contents, includ-
ing the header, of the packets, drop packets, or delay them in
order to reduce the bandwidth. The sending rate of any TCP
sender is controlled by the following five things: availability
of data, the congestion window size, the receiver window
size, the round trip time (RTT), and the rate of acknowl-
edgements.

A sending TCP entity can only send packets if there is
application data available. While it is possible to perform
actions to affect the availability of application data, it is in-
herently application specific. As such, for each new appli-
cation, a new shaper technique must be developed, and is
thus costly to implement and deploy. This approach has
been used to control peer-to-peer traffic flow rates.

The congestion-window size of a sender TCP, if smaller
than the receiver-window size, can limit the rate of TCP
traffic flows. The Random Early Detection (RED) tech-
nique [7] manipulates this window size by preemptively dis-
carding selected TCP packets, thus causing the congestion
window to be reduced. Our triple-ACK duplication mecha-
nism, described in Section 3.1, is based on this approach.

Similarly, the receiver window size, if smaller than the
congestion-window size, can limit the rate of TCP traffic
flows. Several techniques have therefore been developed
based on artificially reducing the size of the receiver win-
dow, below that which is advertised by the receiver [3, 4, 8].
Our zero-window-size technique, which we describe in Sec-
tion 3.2 is inspired by these approaches.

It is well-understood that TCP is proportionally fair to
the inverse of the round trip time (RTT). As such, the longer
the RTT, the lower the bandwidth for the stream. The RTT
can be increased if the traffic shaper introduces a delay
between subsequent ACKs, thus slowing down the rate at
which the sender TCP clocks its output data, thereby reduc-
ing bandwidth. Similarly, the faster the rate of ACKs, the
faster the sender TCP’s congestion window will expand, re-
sulting in a larger data output rate overall. We are not aware
of existing shapers using these approaches.

There are a number of other inline flow-control tech-
niques that are independent of the transport protocol used,
including token and leaky buckets [14] and maintaining
some unused bandwidth on a link at all times [1] to provide
a buffer for bursty traffic. None of these approaches seem
to provide insight for the design of third-party shapers.

2.2.2 End-node flow control

Rather than introduce in-network elements to shape current
traffic, the protocol can be updated on the end-hosts. An up-
dated TCP stack allows one side to inform the other of con-
gestion, for one side to infer impending congestion from the
current network dynamics, or for the receiver to selectively
acknowledge which data packets it has received to avoid un-
necessary retransmissions and to speed up transmissions of
the necessary packets [6]. While there is various research
in this area (e.g., [9, 10]), it has deployment problems, and
does not appear useful for current ISP traffic control.

2.2.3 Mixed method flow control

A mixed approach to bandwidth management is one that
combines the above two techniques. Some algorithms are
implemented on the end-node stacks and an in-network el-
ement is also used. The two would work together to control
network utilization. A typical example in this area is the
Explicit Congestion Notification (ECN) scheme [5], a mod-
ification of RED that avoids unnecessary packet drops. This
scheme sets an ECN bit in the packet header. The transmit-
ter is expected to respond to these ECN bits in the same
way as fast recovery sans the packet retransmission. Other
techniques include Random Early Marking [2]. The draw-
back with these schemes is that they suffer the problems of
end-node flow control, needing updated protocol stacks are
the end hosts. As such, we cannot rely on their presence for
third-party flow control.

3. Third-Party Flow-Control Mechanisms

We have designed two mechanisms for third-party flow-
control. The first, triple-ACK duplication, is based on the
indirect manipulation of the sender’s congestion window
threshold, and is inspired by the RED mechanism. The sec-
ond technique, zero-window-size acknowledgement, ma-
nipulates the sender’s view of the receiver window size. We
now describe these methods in detail, and show how they
are distinct from existing techniques.

3.1. Triple-ACK duplication

Our triple-ACK duplication algorithm attempts to ma-
nipulate the congestion window and threshold of the send-
ing TCP entity. To do so, it requires that the sender TCP
agent is executing the fast retransmit protocol. The ma-
nipulation is caused by sending out three duplicate ACKs
for some of the ACKs it has seen. When the TCP sender
receives four ACKs with the same sequence and acknowl-
edgement numbers, it will invoke congestion control. De-
pending on the particular variant, it will either enter slow
start (Reno 1) or fast recovery (Reno 2). In either case, the
congestion window and threshold are reduced. In addition,
the sender will retransmit the data segment that it under-
stands to be lost.

The reduction in the sizes of the congestion window and
threshold should reduce the rate at which the sender trans-
mits data. However, we must note that the retransmissions
caused by invocation of fast retransmit will also mitigate
that to some degree, as well as reducing the goodput of the
flow. In particular, we have found that the use of triple-ACK
duplication for every ACK packet seen results in an increase
in total bandwidth consumption, as well as a complete col-
lapse of goodput. Careful optimization of the frequency of
triple-ACK duplication is critical to the correct operation of
this method. We note further that the bandwidth consumed
by ACKs going from the router to the sender will also in-
crease.

The triple-ACK duplication technique is illustrated in
Figure 4.

This triple-ACK duplication algorithm is similar to the
RED technique, in that it forces a packet retransmission,
and causes the congestion window and threshold to be re-
duced. However, it differs in that the packet retransmitted
has, in fact, already been seen by the receiver. As such,
there is only brief interval during which the three duplicate
ACKs can be transmitted to the sender. If they do not arrive
before the next ACK from the receiver, the sending TCP
entity will likely ignore them. In the case of the RED tech-
nique, the packet is genuinely dropped, and the remainder
of the RED technique is simply the normal TCP reaction to
the loss of a packet.

Figure 4. Triple-ACK duplication algorithm

Finally, we note that if the sender is using TCP Tahoe
the triple-ACK duplication method will not work, as the
data packet was not, in fact, lost, and thus TCP Tahoe will
not enter congestion control. Again, this is in contrast to
the RED technique, which will work regardless of TCP al-
gorithm. We must emphasize, however, that the RED tech-
nique is not feasible in the third-party shaper deployment, as
it requires the removal of a packet from the packet stream,
which is strictly not possible for a third party.

3.2. Zero-window size algorithm

Our second technique attempts to manipulate the
receiver-window size as seen by the sender TCP. It oper-
ates by sending out a zero receiver-window-size duplicate
ACK for every ACK seen. This is shown in Figure 5.

Figure 5. Zero-window-size algorithm

We note that while this technique is similar to inline al-
gorithms that control the advertised receiver window size, it
differs in that it can, at best, cause a brief reduction. Inline
algorithms have strict control over the advertised window
size, and thus whatever they set the advertised window size
to, it will remain. In our third-party case, however, there is a
stream of ACKs from the receiver, each of which will adver-
tise the correct receiver window size. We can, thus, at best,
briefly persuade the sender that there is no room at the re-
ceiver, before it finds out otherwise. It is for this reason that
we maximize the reduction, by setting the advertised size to

0, which, again, differs from the approach in inline control,
where such an action would not slow down the sender, but
simply stop it.

4. Experimental Evaluation

To evaluate our techniques we developed a series of sim-
ulation experiments. Using the ns-2 simulator [13], we im-
plemented the third-party flow-control architecture of Fig-
ure 2. Both the source and sink nodes have FullTCP agents
attached to them. In ns-2 the FullTCP agent differs from
the regular TCP agent in that it has support for connection
setup and tear-down, as well as header flags. The header
flags were necessary so that we could recognize ACK pack-
ets. The source node also had an application generating
a steady stream of data using the “File Transfer Protocol”
(FTP) attached to the TCP agent. Rather than implement-
ing the FTP protocol, the application simply sent out a con-
tinuous stream of data. This is in keeping with the original
motivation of the project, which is to manage large TCP
flows, as exemplified by peer-to-peer file-sharing traffic.

The router node does not have a TCP agent attached.
A traffic-shaper is connected to the router in third-party
mode. For the purpose of the simulation, the router and
traffic shaper are modeled as a single node. The communi-
cation delay between the router and traffic shaper is mod-
eled simply as a time-delay. The router-cum-traffic-shaper
node operates only at the link layer with no transport-layer
functionality. Only the source and sink run TCP.

Unless otherwise specified, default ns-2 parameters were
used. It is our intention to explore more variations in the
future, to determine to what degree, if any, these defaults
affect the accuracy of our results.

Given this setup, we performed a series of experiments
using our two techniques. Our primary concern in these ex-
periments was to determine the degree to which the meth-
ods could be used to control bandwidth, while operating as
a third party. We now describe these results, starting with
the triple-ACK duplication method.

4.1. Triple-ACK duplication results

The triple-ACK duplication method has one main con-
trol parameter, which is the frequency of duplication. That
is, the technique can choose how many ACKs it sees before
it generates a triple-ACK duplicate. Intuitively, if it is too
frequent, the bandwidth reduction will be offset by exces-
sive retransmission. Conversely, if it is too infrequent, the
congestion window and threshold will not be adequately re-
duced.

We therefore performed a series of experiments in which
the ACK-duplication rate was varied from 1, meaning ev-
ery ACK from triple-duplicated, to 200, meaning that only

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 5 10 15 20 25 30 35 40 45 50

B
an

dw
id

th
 S

av
in

gs
 %

RTT (ms)

Bandwidth Savings vs RTT and Bandwidth for Triple-Ack

1 Mbps
3 Mbps
5 Mbps
7 Mbps
9 Mbps

11 Mbps
13 Mbps
15 Mbps
17 Mbps
19 Mbps
21 Mbps
23 Mbps
25 Mbps
27 Mbps
29 Mbps

Figure 6. Sample triple-ACK duplication

one in 200 ACKs was duplicated. Duplication rates were
increase by 1, for the first 10, then by 5, up to 25, then
by 25, up to 100, and then by 50, up to 200. These ex-
periments were performed over a range of bandwidths and
delays, ranging from 1 Mbps, and 1 ms round trip time to
99 Mbps and 400 ms round trip time. Bandwidth was in-
creased in increments of 2 Mbps. Round trip time was in-
creased in increments of 1 ms for the first 10 ms, and every
10 ms thereafter. All combinations of these parameters were
simulated, and full raw-result data is available at our web-
site: http://www.ccng.uwaterloo.ca/˜pasward/ThirdParty/.

The first, and unsurprising result, was that triple-ACK
duplication of every ACK packet resulted in a bandwidth in-
crease. Of some surprise, however, was the fact that triple-
ACK duplication of every second ACK packet resulted in
a bandwidth reduction though, not surprising;ly, the good-
put reduction was rather severe. Of more significance, we
found that in all instances, the bandwidth reduction reached
a cap level, which was consistent regardless of bandwidth.
The only factor that varied was that the round trip time de-
termined the point at which that cap was reached.

Figure 6 shows a sample triple-ACK duplication, where
the frequency of duplication was 6. This choice was
dictated by the fact that this was the case of maximum
bandwidth reduction we experienced. The graph shows
only round trip times up to 50 ms, and bandwidths up to
29 Mbps. The reader should be able to see that further in-
crease in the bandwidth simply produce reductions at the
top of the graph. Likewise, when the round trip time is
larger, the bandwidth reduction increases. It caps, in this
case, at approximately 85% reduction. We note that the re-
sult of the retransmission in this case meant that the goodput
dropped to approximately 83% of the total data transmitted.
The goodput only exceeded 90% of total data transmitted
when the frequency of triple-ACK duplication was less than

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 20 40 60 80 100 120 140 160 180 200

M
ax

im
um

 P
er

ce
nt

ag
e

B
an

dw
id

th
 R

ed
uc

tio
n

Frequency of Triple-ACK Duplication

Maximum Percentage Bandwidth and Goodput Reduction vs. Triple-ACK Frequency

Percentage Goodput Reduction
Percentage Bandwidth Reduction

Figure 7. Maximum bandwidth reduction

one in ten. However, it should be noted that at that point,
the bandwidth reduction reached as high as 83%.

Figure 7 shows the maximum reduction achieved as a
function of triple-ACK-duplication frequency. As can read-
ily be seen, the maximum peaks in the mid-single dig-
its, declining gracefully thereafter. What this figure does
not show, however, is the reduction level at a given delay-
bandwidth product. In particular, as is apparent in Figure 6,
when the delay-bandwidth product is small, the reduction
is noticeably less. Indeed, this problem gets worse, as the
frequency of triple-ACK duplications declines. For exam-
ple, when the bandwidth is 1 Mbps, and the round trip time
50 ms, the bandwidth reduction is approximately 53% at a
duplication frequency of 6, while it is half that when the
duplication frequency is 20.

The critical parameter range, representing typical home-
based ISP customers using peer-to-peer file-sharing sys-
tems, is between zero to 30 ms round trip time, and mid-
to low single digits bandwidth. In this range we can see
from Figure 6 that, provided the delay is greater than about
20 ms, the triple-ACK-duplication scheme can reduce the
bandwidth consumption by more than 20%. When the fre-
quency is increased to 4, a somewhat lower round trip time
will also experience bandwidth reduction.

These results suggest that triple-ACK duplication can be
used effectively by a third-party-flow control system.

4.2. Zero-window-size results

The zero-window-size method has two main control pa-
rameters, which are the frequency of zero-window-size
ACK generation and the “size” of the window advertised
(which, in spite of our choice of name for this technique,
need not be zero). However, for this series of experiments
we simple set the advertised window size to zero, and gener-

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

B
an

dw
id

th
 S

av
in

gs
 %

RTT (ms)

Bandwidth Savings vs RTT and Bandwidth

1 Mbps
3 Mbps
5 Mbps
7 Mbps
9 Mbps

11 Mbps
13 Mbps
15 Mbps

Figure 8. Bandwidth Savings vs Latency vs
Bandwidth with the Zero-Window Algorithm

ated a zero-window-size ACK for every true ACK the third-
party shaper saw.

As with the triple-ACK duplication experiments, we var-
ied the round trip time from 1 ms to 400 ms and the band-
width from 1 Mbps to 99 Mbps. We used the same combi-
nations of round trip time and bandwidth as in those prior
experiments. Results for bandwidths between 1 Mbps and
15 Mbps and round trips times of between 1 ms and 100 ms
are shown in Figure 8. As can be seen, the bandwidth reduc-
tion for this technique was capped at about 40%. The point
at which this cap was reached was a function of the delay-
bandwidth product. The larger the bandwidth, the quicker it
reached the cap, though that point was capped at 13 Mbps.
Close examination of the figure shows that the line for both
13 Mbps and 15 Mbps coincide. We note that there were no
retransmissions with this algorithm. As a result, the good-
put was equal to the throughput, and we did not need to
calculate any goodput parameters per se.

Unfortunately, in the more-critical lower bandwidth-
delay product area, this algorithm failed to provide sig-
nificant bandwidth savings. For example, at 30 ms round
trip time, with a link bandwidth of 5 Mbps, the reduction
amounted to less than 10%. By contrast, the triple-ACK-
duplication technique, at frequency 6, has a reduction of
almost 70% at this delay-bandwidth point.

For our second set of experiments we varied the com-
munication delay between router and traffic-shaper to ob-
serve the effect on bandwidth reduction. We did this not by
adding a delay directly between the router and traffic-shaper
but instead by adding a delay to when we send out the dupli-
cate ACK with the modified receiver window size. This de-
lay simulates the round trip time between router and traffic-
shaper. We found that the effect was that the system either

operated as if there were no delay, or it failed to operate at
all. That is, there was a hard switch over between the system
functioning, and then ceasing to function. The delay per-
missible was found to equal the inter-ACK delay from the
receiver. Thus, as long as the duplicate zero-window-size
ACK was received before a new, true ACK was received, the
system effectively reduced bandwidth consumption. This
suggests that the system must be extremely responsive if it
is to be effective.

5. Conclusion and Future Work

Based on our experiments, we have demonstrated that
it is possible to control TCP flows with a third-party traf-
fic shaper. Our triple-ACK-duplication algorithm was able
to reduce bandwidth consumption by up to 85%, with a
15%r eduction in goodput. At lesser bandwidth-reduction
levels, the goodput approaches 100%. The zero-window-
size algorithm is also able to reduce bandwidth consump-
tion, though by a lesser amount. It does not suffer from the
need to retransmit, and thus maintains 100% goodput.

In the more-critical range of zero to 30 ms round trip
time, and mid- to low single digits bandwidth, typical of
home-based ISP customers using peer-to-peer file-sharing
systems, the zero-window-size approach provides very lit-
tle benefit. The triple-ACK duplication method is still able
to provide more than 20% bandwidth reduction, with a du-
plication frequency of 6. At the expense of greater goodput
reduction, duplication frequency can be increased, reducing
the bandwidth at lower delay-bandwidth products.

Our current work is now attempting to address three
points. First, we are looking at asymmetric latencies be-
tween the sender, receiver, and the third-party shaper. In
particular, we believe that a typical deployment will have
the shaper very close to either the sender or receiver, rather
than being half-way between, as was simulated in our ex-
periments. Second, we are implementing the triple-ACK
duplication scheme, to determine the degree to which our
simulation results work in practice. We are building this on
top of the netfilter system [11]. Third, we are developing a
controller for our system, to enable feedback-control-based
bandwidth adjustment. The controller will measure the cur-
rent bandwidth utilization, and compare it against the target
level. The frequency of triple-ACK duplication will be ad-
justed accordingly.

References

[1] Yehuda Afek, Yishay Mansour, and Zvi Ostfeld.
Phantom: A simple and effective flow control scheme.
In SIGCOMM ’96: Conference proceedings on Ap-
plications, Technologies, Architectures, and Protocols

for Computer Communications, pages 169–182. ACM
Press, 1996.

[2] Sanjeewa Athuraliya, Steven H. Low, and David E.
Lapsley. Random early marking. In QofIS ’00: Pro-
ceedings of the First COST 263 International Work-
shop on Quality of Future Internet Services, pages 43–
54. Springer-Verlag, 2000.

[3] James Aweya, Michel Ouellette, and Delfin Y. Mon-
tuno. Weighted proportional window control of TCP
traffic. Int. J. Netw. Manag., 11(4):213–242, 2001.

[4] James Aweya, Michel Ouellette, Delfin Y. Montuno,
and Zhonghui Yao. Enhancing network performance
with TCP rate control. In Proc. of the IEEE Global
Telecommunications Conference (GLOBECOM), vol-
ume 3, pages 1712–1718, San Francisco, CA, 2000.

[5] Sally Floyd. TCP and explicit congestion notification.
ACM Computer Communication Review, 24(5):10–23,
October 1994.

[6] Sally Floyd. A report on some recent developments in
TCP congestion control. IEEE Communications Mag-
azine, 39(4):84–90, April 2001.

[7] Sally Floyd and Van Jacobson. Random early detec-
tion gateways for congestion avoidance. IEEE/ACM
Trans. Netw., 1(4):397–413, 1993.

[8] Shrikrishna Karandikar, Shivkumar Kalyanaraman,
Prasad Bagal, and Bob Packer. TCP rate control. SIG-
COMM Comput. Commun. Rev., 30(1):45–58, 2000.

[9] James F. Kurose and Keith W. Ross. Computer Net-
works: A Top-Down Approach Featuring the Internet.
Addison Wesley, first edition, 2001.

[10] Jim Martin, Arne A. Nilsson, and Injong Rhee. Delay-
based congestion avoidance for TCP. IEEE/ACM
Trans. Netw., 11(3):356–369, 2003.

[11] netfilter. The netfilter/ip tables project. Available at
http://netfilter.org/.

[12] Larry L. Peterson and Bruce S. Davie. Computer Net-
works: A Systems Approach. Morgan Kaufmann, sec-
ond edition, 2000.

[13] VINT Group. UCB/LBNL/VINT network simula-
tor (ns) - version 2. Available at http://www.isi.edu/-
nsnam/ns.

[14] Cheng-Shong Wu, Ming-Hsien Hsu, and Kim-Joan
Chen. Traffic shaping for TCP networks: TCP leaky
bucket. In Proc. of the IEEE Conference on Comput-
ers, Communications, Control and Power Engineering
(TENCON), volume 2, pages 809–812, October 2002.

