
Malicious Behaviour in Content-Addressable Peer-to-Peer Networks

Thomas Reidemeister
University of Magdeburg, Germany

treideme@student.uni-magdeburg.de

Klemens Böhm
University of Karlsruhe, Germany

boehm@ipd.uka.de
Paul A.S. Ward

University of Waterloo, Canada
pasward@ccng.uwaterloo.ca

Erik Buchmann
University of Magdeburg, Germany
buchmann@iti.cs.uni-magdeburg.de

Abstract

Distributed Hash Tables (DHTs) promise to manage
huge sets of key-value pairs in a Peer-to-Peer manner. The
Content-Addressable Network (CAN) is a prominent vari-
ant of DHT. A critical challenge when designing a CAN,
or indeed any DHT, is ensuring that all data items are ac-
cessible despite the presence of malicious and faulty peers.
Such peers may hinder other peers in accessing the keys in
various ways. In this paper we identify various types of at-
tacks and propose, where possible, some countermeasures.
To counter man-in-the-middle attacks we have developed a
dynamically-adjustable multi-path routing algorithm. We
evaluate the efficacy of our method both analytically and by
simulation. For networks with less than 1% malicious peers
we were able to reduce the effect of such attacks by 80%.

Keywords: networking, malicious behaviour, CAN, at-
tacks, DHT

1. Introduction

Distributed Hash Tables (DHTs) are designed to manage
huge sets of key-value pairs under high workloads. They
form a self-organizing overlay network on top of large phys-
ical networks that consist of autonomous and anonymous
peers. The Content-Addressable Network (CAN) [12] is
a prominent kind of DHT. While other DHT variants are
available, notably Chord [16] and Pastry [13], this article
focuses on CANs. At present, DHT design in general, and
the CAN in particular, presumes that there is no malicious
behaviour, and the will to carry out operations is established
among the peers. For a closed group of users these assump-
tions are reasonable. For an open network, with anyone free
to join, these assumptions are not realistic. In this situation,
the CAN must remain operational in the presence of mali-
cious, faulty, or uncooperative peers.

We define malicious peers as those peers which inten-
tionally harm the operation of the CAN. It is not necessary
for the peer(s) causing the harm to obtain any direct advan-
tage by their attack. For example, a peer that commits an
attack may not, by its attack, be able to issue queries more
easily. Motive is not relevant to our work. That said, it may
typically be the case that the intention behind being ma-
licious is to make information unavailable to other peers,
possibly generating and disseminating false information.

We define faulty peers as peers that manifest faults, but
that do not harm the network intentionally. Their behaviour
can be the result of poor protocol implementations, software
or hardware failures, etc. Given their lack of malicious in-
tention, and assuming independent failure, it is reasonable
to posit that faulty peers do not intentionally co-operate in
harming the network. Malicious peers, by contrast, might
co-operate according to their purposes. Since byzantine
failure is indistinguishable from malice, we will not, in gen-
eral, make a distinction between faulty and malicious peers.
We define any action by either of these peer types that harms
the CAN as an attack on the CAN.

Uncooperative peers wish to benefit from the network
without carrying out operations related to requests issued
by other peers. Research in countering such free riding, in
the absence of malice, has already been done by various
researchers (e.g., [1, 2, 3, 7]), and is not our focus here.

In this paper we identify various attacks on the CAN that
are the result of malicious or faulty peers. We describe pos-
sible countermeasures to some of these attacks and present
simulation results that demonstrate the efficacy of our coun-
termeasures.

To counter man-in-the-middle attacks we developed a
dynamically-adjustable multi-path routing algorithm. In
Section 4, we evaluate the efficacy of this algorithm analyt-
ically and by simulation. We show that for networks with
less than 1% malicious peers we were able to reduce the
effect of man-in-the-middle attacks by 80%.



2. Content-Addressable Networks

The Content-Addressable Network (CAN) is a large-
scale Distributed Hash Table (DHT). It implements the
usual hash-table operations, namely, the insertion, lookup,
and deletion of values that are mapped to keys. The key
space is mapped to an n-dimensional torus. Each peer of
the network manages a zone of the key space and stores
additional contact information of nodes1 that manage the
adjacent zones. We refer to a CAN as regular if all peers
manage equally-sized zones. In general, a CAN will not
be regular. However, regular CANs are more amenable to
mathematical analysis, and are thus a useful concept.

The peers of the CAN issue and perform the operations.
We define operations as performing a hash-table operation
on the local zone of a peer. A request is generated for
each operation that cannot be satisfied from the zone of the
current peer. This request contains the destination-key, the
sender, and a value in the case of insert requests. The re-
quest is forwarded to the neighbour that is closest to the
destination key. We refer to this as forwarding or routing.
This peer in turn forwards the request to its neighbour clos-
est to the destination key. We refer to the peers forwarding
a request as forwarders. Forwarding is performed until the
request arrives at the peer that manages the zone contain-
ing the destination key. We refer to this peer as the receiver.
The receiver performs the operation and sends the requested
information directly back to the original sender of the re-
quest.

Figure 1. Sample routing in a 2d CAN

Figure 1 shows an example routing path for a request
generated by node 29 for a key that is managed by node 3.
The request contains node 29 as sender and the key. Node
29 forwards the request to node 11, because node 11 has
the least distance to node 3 among its neighbours. Node 11
forwards it to node 23, which in turn forwards the request to

1We will use the terms “node” and “peer” interchangeably.

node 3. Node 3 performs the operation and sends the result
directly back to node 29. For completeness we mention here
that the neighbourhood of a zone can be defined in different
ways. Ratnasamy et al. [12] define two peers as neighbours
if their zones overlap in d−1 dimensions, where d is the di-
mension of the CAN. Thus, each peer has 2d neighbours if
the CAN is regular. We refer to this as city-block neighbour-
hood. Alternately, two peers can be defined as neighbours
if their zones have one point in common. In this approach
a peer has 3d − 1 neighbours in a regular CAN. We refer
to this as point neighbourhood. In this paper we use point
neighbourhood if not stated otherwise.

3. Attacks

There are a number of attacks to which peer-to-peer
(P2P) protocols in general, and the CAN system in particu-
lar, are vulnerable. Sit and Morris [14] have enumerated a
number of attacks on generic P2P protocols. In this section
we present vulnerabilities we have identified on the CAN
system specifically. We provide, where possible, counter-
measures to such attacks. The reader should note that we
do not deal with attacks at the application level (e.g., the
insertion of bad content into the CAN) or on the underly-
ing network (e.g., TCP/IP-level attacks). In the latter case,
we presume that the core network is relatively secure. In
the former case, we leave it to application-level semantics
to deal with the problem.

In Section 3.1 we describe man-in-the-middle attacks.
We analyze denial of service (DOS) attacks in Section 3.2.
We describe attacks that can be committed by a malicious
zone owner in Section 3.3. In Section 3.4 we describe
attacks that harm the structure of the CAN. In Section 4
we will focus exclusively on countermeasures to the man-
in-the-middle attack, providing an algorithm to address it,
analysis of that algorithm, and simulation data to confirm
our analysis of the efficacy of our approach.

3.1. Man-in-the-middle attacks

Man-in-the-middle attacks in the Content-Addressable
Network may occur while routing a request. A malicious
or faulty peer on the route to the destination may modify or
drop requests. These attacks can either be committed inten-
tionally, to prevent the sender from gathering or inserting
specific information into the CAN, or they can be the result
of peer error. Our simulation results (see Section 4.2) show
that this type of attack is a serious problem, with just a small
number of malicious nodes needed to corrupt a very large
large number of requests. For example, in a 10,000-peer
CAN, less than 1.5% of nodes need to be malicious for one
in ten requests to be corrupted. Further, this problem grows
with the size of the CAN, as the route lengths will grow.



As described in Section 1, the request of a message con-
tains contact information of the sender, the destination key,
and further information related to the operation to be per-
formed. These are properties that are accessible to every
forwarder. The effect of modifying one of these properties
is a corrupted request, leading to three basic attacks:

1. If the sender of the request is modified, then the re-
sponse for this request will not reach the original
sender.

2. If the destination key of a lookup request is modified,
then the sender of the request will receive a false re-
sult. If this happens to an insert request, then the con-
sistency of the CAN is harmed.

3. Modifying additional information attached to a request
also harms the consistency of the CAN. For example, if
the value to be inserted by an insert request is modified,
an illegal value is inserted at the destination key.

The occurrence of these characteristics of the man-in-
the-middle attacks can be detected. Attack one can be de-
tected by the sender using a timeout for each request. To
detect modifications of additional information by malicious
peers, the receiver can directly ask the sender to confirm the
information. However, a combination of attacks one and
three cannot be ruled out by only using such a handshake.
A malicious node could replace the sender of a request with
its own contact details, modify the additional information,
and perform the handshake. From the perspective of the
receiver the modified request seems to be correct. Our ap-
proach to deal with such attacks, as we will describe in de-
tail in Section 4, is to use multiple paths to the destination,
thus precluding all but colluding man-in-the-middle attacks.

We note here that an alternate approach to counter man-
in-the-middle attacks is to use a public-key infrastruc-
ture [15]. The requests are signed by the sender and the
receiver can check the authenticity of the signature by ob-
taining the public key from a central authority. However,
the use of a central authority is not consistent with the idea
of peer-to-peer DHTs. Other attacks using distributed algo-
rithms [6] are too expensive in a setting such as ours.

While man-in-the-middle attacks can be detected, as we
shall see in Section 4, the desired operations of the request
may not be carried out properly without further countermea-
sures. There are several approaches to address this problem.

Ratnasamy et al. [12] suggest data replication. This ap-
proach replicates the key space into multiple realities. In
every reality, the same partitions of the key space are owned
by different peers. For example, each reality is described by
another hash function. If the CAN is a read-only structure,
then issuing the request in all realities reduces the proba-
bility of the request being corrupted. A problem with this
approach is the potentially large data overhead by replicat-
ing the CAN. Naively issuing the request in every reality
also produces a significant message overhead.

Sit and Morris [14] propose to let the sender observe

the routing path. Because greedy-routing is used, the dis-
tance from the forwarders zone to the destination key will
decrease from hop to hop. If an anomalous hop occurs the
sender could ask the last correct forwarder to use a different
routing path. For example, if the distance to the destination
key increases after the hop, the sender asks the previous for-
warder to provide a different routing path.

This could solve the problem of modifying the destina-
tion. However, checking each message hop is likely to in-
crease the bandwidth and time overhead substantially. The
sender of a request is also in a guessing situation which peer
has modified the message. Further, a number of collud-
ing peers could pretend to form a correct routing path and
one could claim to be the destination by sending a spoof
reply [8].

In Section 4 we present our solution to the man-in-the-
middle problem, which addresses the various concerns de-
scribed above.

3.2. Denial of service attacks

Denial-of-Service (DOS) attacks have received a lot of
attention in the past years. The idea behind this attack is to
generate a sufficient workload on a particular peer, by one
or more other peers, to bring that peer down. If a denial-
of-service attack is committed by a number of nodes it is
typically referred to as a distributed denial of service attack.
We do not make such a distinction, or consider it relevant
to our work here. The motivation behind this attack is to
make information unavailable to other peers by consuming
the resources of the peer that provides this information, or
to prevent the attacked node from obtaining services/data
from the CAN.

We begin our analysis of this attack on the CAN by iden-
tifying types of this attack. In Section 3.2.1 we describe
how the classic Denial-of-Service (DOS) attacks can harm
the operation of the CAN. An advanced DOS attack, the
bogus-request attack, is outlined in Section 3.2.2.

3.2.1 Classic DOS attack

The classic DOS attack is committed by a number of peers.
They have chosen a particular key, or a number of keys,
that point at data items they wish to make unavailable. At
a certain time they start their attack by issuing a large num-
ber of requests targeting their chosen keys. Because the at-
tack consumes the resources of the target peers, those peers
might become unavailable. The difficulty with dealing with
this problem is that it is strictly impossible to differentiate
between a valid, but large, workload and a denial-of-service
attack.

Countermeasures Given the indistinguishableness of
denial-of-service attacks from a large, but valid, workload,



Key last forwarders
(234,234) 18
(234,234) 6
(234,234) 18
(234,234) 6
(123,123) 13
(234,234) 18
(234,234) 6

. . .

Table 1. Example History of Recent Requests

our basic approach to this problem is to replicate data items
in the CAN. Research on replication in P2P environments
has been done by various researchers [5, 11, 12], and we
draw on their work. We first address the problem in the
context of a read-only CAN. In this instance hop-replication
could reduce the impact of this attack.

The idea behind hop-replication is that a peer repli-
cates frequently-requested data items to its neighbours.
For example, considering Figure 1, imagine that the key
(234, 234) is held by peer 3, and is the target of an attack.
Assume that peer 3 keeps a history of the recent queries and
their last forwarders, with the most recent data in this his-
tory shown in Table 1. In this case, a lot of requests for
key (234, 234) came from peers 6 and 18. Peer 3 could
therefore forward a copy of this data item to those peers. In
this event, we refer to these peers as replica keepers. The re-
sult of this replication is that peers 6 and 18 can now satisfy
requests on key (234, 234) too. This improves the situation
for peer 3. Now the attackers must not only consume the
bandwidth of one peer, they must consume the bandwidth
of multiple peers. Further, peer 3 is now available to pro-
cess other requests. A further improvement is to allow the
replica keepers to recursively forward the replicas to their
frequent last forwarders.

In principle, this approach could also be used to detect
the origin of the DOS-attack. If a peer refuses to hold a
copy of the data item that is frequently accessed from its
direction, then this peer is likely to be an origin of the DOS
attack. The peers detecting this case can ignore any future
queries from the peer identified.

We now consider the case where the CAN is modifiable,
and thus we must deal with updates. One approach is to
timestamp all replica data. If a replica times out, a new copy
is obtained. Insert requests are forwarded to the peer con-
taining the key in its key space, in a write-through caching
style. This procedure is sometimes referred to as lazy repli-
cation [10].

Unfortunately, this approach offers a new possibility for
denial-of-service attacks. The attacker now generates insert
and update requests, which are sent directly to the owning

peer, thus overloading it. To avoid this, the targeted peer
forwards advice to its neighbours to ignore, or accept only
a small fraction of, any incoming insert and update requests
for a period of time for the attacked key. This approach
has been inspired by Vig [17], who suggests blocking DOS
attacks that follow certain patterns on web servers behind a
gateway at the gateway, as depicted in Figure 2.

webservers gateway internet

DOS attack

advice to block

Figure 2. Blocking DOS attacks

In this approach, a web server is exposed to an extraor-
dinary load. It assumes that the respective requests are part
of a DOS attack, and thus advises its gateway to ignore any
further incoming packets that follow this pattern.

Another approach to get rid of ”hot spots” is to use zone
overloading, as described by Ratnasamy et al. [12]. This
approach allows a peer to dynamically adjust the number
of copies of its zone. It assigns joining peers copies of its
zone. A DOS attack must then target all replicas, reducing
its chance of success.

In this section we described countermeasures against
DOS attacks. Replicating the attacked data items at the
neighbours of the victim may be an effective way to make it
available to other requests, although this approach is limited
to query attacks. The efficacy of these approaches needs to
be evaluated.

3.2.2 Bogus request attacks

The bogus-request attack is the inverse of the classic DOS
attack. Instead of sending multiple requests to the target,
multiple replies are transmitted. This attack is committed by
a number of peers that generate bogus requests to random
destination keys. The malicious peers do not include their
contact information as sender. Instead they name the victim
as sender and claim to be the forwarders of this request. As
a result, the replies will primarily consume the bandwidth of
the victim and make it unavailable. This attack is similar to



the Smurf IP DOS attack [4], though that attack uses ICMP
echo requests.

Countermeasure A possible countermeasure against this
attack is handshaking. Before the destination peer of a re-
quest performs an operation, it contacts the sender included
in the request and requests a confirmation for the desired op-
eration. The efficacy of this approach depends on the size
of the messages used in the CAN. For example, in a simple
lookup service the message size is presumably the same as
the size of a confirmation message. On the other hand, if
the CAN is used as a backend for a distributed file system,
the size of a confirmation message is small relative to the
files. Instead of the data requested, the confirmation request
only contains the key and not the requested data.

3.3. Attacks by a malicious zone owner

The previous attacks are committed by the senders and
the forwarders of a request. The receiver can also behave
maliciously, since it is the owner of the zone that con-
tains the desired key. A malicious destination peer could
drop the request or answer with a spoof result. Data repli-
cation [12] is required to prevent a single malicious zone
owner from making the information unavailable. Such
replication is the subject of much dependable distributed-
systems research [9].

3.4. Attacks on the structure of the CAN

The CAN is a dynamic system. Peers can enter and leave
the network frequently. A peer that joins takes over a part of
a zone of a peer that is already part of the network. To join
the CAN, the joining peer has to know a peer that is part of
the network. We refer to this peer as the contact peer. The
contact peer will then issue a query to a random destination
key. The peer containing the destination is referred to as
the destination peer. The destination peer splits its zone
into two equal parts and assigns one part to the joining peer.
The destination peer also informs all of its neighbours about
the joined peer and removes the now non-neighbours from
its neighbour set. After joining the CAN, the joining peer
sends out periodic updates to its neighbours, as suggested
by [12], so that node departures will be detected.

3.4.1 Modified split distribution

The destination peer is chosen by the contact peer. It is sup-
posed to select the destination randomly. Instead, it could
always choose the same destination key. This results in a
highly fragmented area around the destination key. The in-
tention behind this attack is to have a small zone and there-
fore a smaller number of queries. On the other hand, peers

that have joined the CAN the way they are supposed to tend
to have a larger zone. Hence, they will have to process more
requests than the malicious peers.

3.4.2 Multiple joins

Because the CAN has no central authority that keeps track
of joining peers, and the peer identifiers are not hashed onto
the key space, as for example in Chord [16], it is possible
for a peer to join multiple times. The intention behind this
attack is to take over a larger area of the CAN. Having mul-
tiple zones in the CAN involves it in more routing paths.
Thus, the peer can commit more man-in-the-middle attacks.
The peer can also make these zones unavailable by acting as
a malicious destination as described in Section 3.3.

3.4.3 Invalid splits

If the destination peer has to perform a split, it could use the
opportunity to reduce its zone to a size smaller than its half.
As a result, it reduces its future workload, because it does
not have to carry out as many requests.

3.4.4 Countermeasures

Because we do not have a central authority that keeps track
of joining and departing peers, it is hard to counter this type
of attacks. If we did allow a central authority, it could assign
zones of the key space to peers. This would prevent those
attacks. However, this solution is not in line with the peer-
to-peer paradigm.

4 Multi-path routing

In this section we give a detailed description of our
multi-path routing algorithm that counters man-in-the-
middle attacks. Our approach is to use message replication.
Given that the key space is a Cartesian coordinate system, as
in Figure 1, we can wrap around the edges. In general, each
dimension of the CAN can be wrapped. Thus, we propose
a multi-path routing algorithm that offers 2d almost peer-
disjoint paths, where d is the dimensionality of the CAN, to
reach the destination peer from the source.

The CAN uses greedy routing to forward messages from
the sender to the receiver: a forwarder calculates the dis-
tance to the destination key from all of its neighbours and
selects the neighbour with the smallest distance to send the
message to. Our algorithm redefines the distance calcula-
tion based on a bit mask. The number of bits of the bit
mask in our context is the dimensionality of the key space.
A bit mask describes a possible path from the sender to the
destination: If (and only if) the bit for a certain dimension is
set, the path wraps around this dimension. Figure 3 serves
as an illustration for the two-dimensional key space.



Figure 3. Bit-mask paths in 2d-CAN

If we imagine a sender that is about to send out a re-
quest, instead of sending out one message, it sends a num-
ber of messages, which we term the request messages. For
the time being, there is one message for each bit mask. But
there can be less messages, as we will explain later in this
section. We refer to the bit mask corresponding to a request
message as its request bit mask. It specifies the direction
where the sender is supposed to send the message, and it
is attached to the message. Furthermore, all request mes-
sages contain the same sender, key and additional informa-
tion. Sending several messages along disjoint paths reduces
the probability that the request is corrupted. If at least one
unmodified request message reaches the destination, the op-
eration is performed. The sender must obtain at least two
identical replies to its messages to identify correct answers.
Two identical messages are sufficient if we assume that ma-
licious peers do not collude. If collusion occurs, more than
half identical replies would be needed, if we presume that
malice is relatively rare.

When crossing the edge of a dimension, the bit mask
must be changed. If not, this algorithm would end up in a
loop. The message would be passed over the edge again.
The neighbour on the other site would perform the distance
calculation using the old bit mask. As a result, this peer
would send the request back to its last forwarder and so on.

We use situation checking to modify the request bit
mask. When a peer calculates the distance of one of its
neighbours to the destination key, it creates a separate bit
mask for its relation to the neighbour. We refer to this bit
mask as the situation bit mask.

Figure 4 illustrates situation bit masks. The thick lines
mark the edge of each dimension. The top edge of peer 17
is the top horizontal edge. Its right edge is the vertical edge.
The peers 6, 18, 8, 1, 28, 15, 26, 11, 23 and 3 are the peers
managing the adjacent zones. Because this is an example
for the two-dimensional case, we have bit masks consisting
of two bits. To reach the peers 1, 28 and 15 from peer 17 the
horizontal dimension needs to be wrapped. This requires
that the second bit is set to 1. For peers 6 and 18 the vertical

Figure 4. Sample situation bit masks

dimension needs to be wrapped. This requires that the first
bit is set to 1. To reach peer 8 both dimensions need to be
wrapped, thus both bits are set to 1. The bit masks of the
other peers are set to 00, because they can be reached from
peer 17 without wrapping any dimension.

The forwarders have to decide whether to send the re-
quest over the edge of the dimension or not. This deci-
sion depends on the situation bit mask Bp(i) for each of
its neighbours i and the request bit mask Br. We use bit-
wise logical operators to make this decision. The masks are
checked in the following order:

1. Neighbours that satisfy (¬Br) ∧ Bp(i) = 1 are not
considered as possible forwarders.

2. If the peer can only reach one of its neighbours by
wrapping a dimension, the request bit mask is modi-
fied as follows: Br := Br ∧ (¬Bp(i)).

Case 1 excludes all neighbours that can only be reached
by going over an edge that is not allowed by the request
bit mask. If an edge is to be crossed, then case 2 sets all
corresponding bits of the request bit mask to 0. For exam-
ple, consider a request with a bit mask of 01 that is to be
forwarded from peer 17. The first case prevents forwarding
this request to the peers 6, 18, 8. If the request is to be for-
warded over the horizontal edge, the bit mask is set to 00
according to case two.

4.1. Attack probability

In this section we compute the probability for a request
to be subject to a man-in-the-middle attack. Sending out
2d requests per operation is inefficient. A peer can adjust
multi-path routing if it knows the probability of hitting a
malicious node. If the probability is low, single-path routing
can be used instead of multi-path routing, to save the data
bandwidth overhead. We will at first describe the attack
probabilities for single-path routing and multi-path routing.



Then we describe how to adjust the multi-path routing. For
our formal analysis we make several assumptions:
• Malicious peers do not collude.
• A malicious peer is always malicious and does not

change its behaviour.
• The total number of peers in the network is known to

each peer or can be estimated.
• The destination peer of a request is never malicious.
• A request is only attacked once. Thus, an attacked path

relates to one malicious node. Because we regard ma-
licious behaviour as an exception, this assumption is
reasonable.

• The malicious peers are uniformly distributed in the
key space.

• The CAN is regular.

Single-path routing The attack probability for an at-
tacked path for single-path routing can be constructed on
top of the probability for an attack of one message hop ph.
We define one message hop as forwarding the request from
a peer to its neighbour. We calculate the probability for one
hop to be attacked from m, the number of malicious peers,
and n, the total number of peers.

ph = m/n (1)

While n can be estimated, m is not known to the peer. We
will later show how a peer can estimate ph by using multi-
path routing, enabling it to estimate m.

We can apply a binomial distribution with the parameters
p = ph and q = 1− ph. The average path length is denoted
by l. Since we assume that a request is only attacked once,
we have to cumulate all possible permutations of at least
one attack to happen.

P (X ≥ 1) = 1 − P (X = 0) (2)

P (X = 0) =

(

l

0

)

p0qdle (3)

By simplifying and substituting our values, we get

P (X ≥ 1) = 1 − (1 − ph)dle (4)

If two peers are defined as neighbours using the city-
block definition, then the average path length l as number
of hops can be calculated as

l =
d

4
n

1

d (5)

When two peers are defined as neighbours using point
neighbourhood, then

l =
1

4
(dn)

1

d (6)

Equation 5 has been proposed by Ratnasamy et al. [12].
If we use point neighbourhood and assume that zones are
very small, the Euclidean distance is a good approximation.
Because of the torus property, the longest path is 1

2
(dn)

1

d .
Thus, the average path length can be calculated by using
Equation 6.

Estimating the percentage of malicious peers When us-
ing multi-path routing, a peer can estimate the percentage
of malicious peers and the probability for a message to be
attacked at one message hop. The receiver of a request ap-
pends the number of message hops hr(i) for each request
message i to the result. The sender of the request can sum
up the number of message hops of messages resulting in
correct results. It also keeps a count of the corrupted mes-
sages cf and the total count of correct messages ct. For sim-
plicity, we assume that the corrupted messages have been
attacked in the middle of the path. We define Ct as the set
of identifiers of all correct paths. Thus, we calculate the
probability ph for a message to be attacked at one particular
message hop as follows:

ph =
cf

cf
l
2

+
∑

jεCt
hr(j) + 1

(7)

Using this formula, we can estimate the attack probabil-
ity for single-path routing. This in turn allows us to adjust
the number of messages for multi-path routing. At a fairly
low attack probability, the peer sends out a low number of
messages per request. At a higher attack probability, the
peer uses more messages per request. The peers can send
out multi-path requests with a large number of messages
periodically to update their estimation for ph. However, ad-
justing the number of messages is non-trivial. Note that the
relationship between the attack probability and the number
of paths in multi-path routing is not linear. Deriving a com-
prehensive model is future work.

4.2. Simulation

We simulated the effects of man-in-the-middle attacks
on the CAN. To enable comparison with our analytical re-
sults, we used a regular CAN with no peers entering or leav-
ing during the simulation, 10, 000 peers, and 1, 000, 000
uniformly-distributed queries. The number of malicious
peers was varied from 0 to 500, uniformly distributed in
the CAN. Figure 5 shows the impact of man-in-the-middle
attacks using the classic three-dimensional CAN without
any countermeasures and the CAN using multi-path rout-
ing. The horizontal axis shows the percentage of malicious
peers. The vertical axis shows the percentage of requests
corrupted. We examined up to 5% malicious nodes, since
we regard malicious behaviour as an exception. In partic-
ular, if there are effective measures against malice, it will



Figure 5. Impact of man-in-the-middle attacks

become rare, as it will be unproductive. We found a signif-
icant benefit in using multi-path routing in such cases. For
example, when 1% of the peers are malicious our algorithm
reduces the impact from 8.12% of queries being corrupted
to 1.21%, an 85% reduction. Also as can be seen in Fig-
ure 5, the estimates for single-path routing obtained from
our analytical model approximately match the simulation.

5 Conclusion

Content-Addressable Networks (CAN) are P2P overlay
networks that allow storage and querying of huge volumes
of data. However, their design thus far assumes that trust is
given and there are neither malicious nor faulty peers in the
CAN. This limits applicability to closed networks execut-
ing correct software on flawless hardware. Keeping a CAN
operational in the presence of malicious and faulty peers
makes it applicable for an Internet-scale open network. In
this paper we presented various types of attacks on the CAN
and possible countermeasures. We have demonstrated the
efficacy of multi-path routing to eliminate the effect of man-
in-the-middle attacks. Our future work is to evaluate the
efficacy of other proposed countermeasures. The list of at-
tacks identified is unlikely to be complete. Further, there are
still open questions in how to deal with attacks on the ap-
plication layer. In particular, the problem of peer inserting
unwanted or unpopular data into the CAN remains open.

References

[1] K. Aberer and Z. Despotovic. Managing trust in a peer-2-
peer information system. In CIKM ’01: Proceedings of the
Tenth International Conference on Information and Knowl-
edge Management, pages 310–317. ACM Press, 2001.

[2] E. Adar and B. A. Huberman. Free riding on gnutella. First
Monday, Sept. 2000.

[3] E. Buchmann and K. Böhm. Fairnet - How to counter free
riding in peer-to-peer data structures. In Proc. of the In-
ternational Conference on Cooperative Information Systems
2004, Agia Napa, Cyprus, Oct. 2004.

[4] CERT Coordination Center. CERT advisory CA-1998-01
smurf IP denial-of-service attacks. Technical report, CERT
Coordination Center, Pittsburgh, PA, 5. Jan. 1998.

[5] E. Cohen and H. Kaplan. Balanced-replication algorithms
for distribution trees. In ESA ’02: Proceedings of the 10th
Annual European Symposium on Algorithms, pages 297–
309. Springer-Verlag, 2002.

[6] A. Datta, M. Hauswirth, and K. Aberer. Beyond “web of
trust”: Enabling p2p e-commerce. Proceedings of the IEEE
Conference on E-Commerce, USA, 2003.

[7] P. Dewan and P. Dasgupta. Pride: Peer-to-peer reputa-
tion infrastructure for decentralized environments. In WWW
Alt. ’04: Proceedings of the 13th International World Wide
Web Conference on Alternate Track Papers & Posters, pages
480–481. ACM Press, 2004.

[8] J. R. Douceur. The sybil attack. In IPTPS ’01: Revised
Papers from the First International Workshop on Peer-to-
Peer Systems, pages 251–260. Springer-Verlag, 2002.

[9] P. Jalote. Fault Tolerance in Ditsributed Systems. Prentice
Hall, Englewood Cliffs, New Jersey, 1994.

[10] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing
high availability using lazy replication. ACM Trans. Com-
put. Syst., 10(4):360–391, 1992.

[11] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing
nearby copies of replicated objects in a distributed environ-
ment. In SPAA ’97: Proceedings of the ninth annual ACM
symposium on Parallel algorithms and architectures, pages
311–320. ACM Press, 1997.

[12] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Schenker. A scalable content-addressable network. In
Proceedings of the 2001 Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Com-
munications, pages 161–172. ACM Press, 2001.

[13] A. I. T. Rowstron and P. Druschel. Pastry: Scalable,
decentralized object location, and routing for large-scale
peer-to-peer systems. In Middleware 2001: Proceedings
of the IFIP/ACM International Conference on Distributed
Systems Platforms Heidelberg, pages 329–350. Springer-
Verlag, 2001.

[14] E. Sit and R. Morris. Security considerations for peer-to-
peer distributed hash tables. In IPTPS ’01: Revised Papers
from the First International Workshop on Peer-to-Peer Sys-
tems, pages 261–269. Springer-Verlag, 2002.

[15] W. Stallings. Cryptography and Network Security: Princi-
ples and Practice, 3rd edition. Pearson Education, 2002.

[16] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F.
Kaashoek, F. Dabek, and H. Balakrishnan. Chord: A scal-
able peer-to-peer lookup protocol for internet applications.
IEEE/ACM Trans. Netw., 11(1):17–32, 2003.

[17] A. Vig. Preventing denial of service attacks. Online ar-
ticle available at: http://www.onlamp.com/pub/a/bsd/2004/-
06/24/anti dos.html, June 2004.


