
Event-Based Self-Management

Paul A.S. Ward∗, Dwight S. Bedassé, Tao Huang, Mohammad A. Munawar, and
Jai Jun Wu
Department of Electrical and Computer Engineering, University of Waterloo
200 University Ave. W.
Waterloo, ON, Canada
{pasward,dsbedass,t6huang,mamunawa,jjwu}@ccng.uwaterloo.ca

Abstract
The behaviour of distributed applications, services, and systems can be modeled as the oc-
currence of events and their interrelationship. Event data collected according to the event
model is stored within a partial-order data structure, where it can be reasoned about, en-
abling autonomic feedback control. This paper summarizes a decade’s worth of research
on distributed-system monitoring and control, and shows how that work is directly ap-
plicable to the problem of self-managed distributed systems. We will identify the major
issues and open problems in self-management, and discuss the various approaches we are
taking to addressing those problems.

Keywords
Autonomic computing, program steering, self management.

1. Introduction

The architecture of tools for monitoring and controlling distributed applications, services,
and systems is broadly similar, and can be characterized as shown in Fig.1(a). A variety
of such tools have been built over the years, including ATEMPT [4, 5], Object-Level
Trace [2], POET [6], POTA [9], and Log and Trace Analyzer [1]. The distributed system
is instrumented with monitoring code that captures significant event data. Ideally, the
information collected will include the event’s process and thread identifiers, number, and
type, as well as partner-event identification, if any. This event data is forwarded from each
process to a central monitoring entity which, using this information, incrementally builds
and maintains a data structure of the partial order of events that form the computation [7].
That data structure may be queried by a variety of systems, the most common being
visualization engines for debugging and control entities for program steering.

The intent of this paper is first to observe the similarities and differences between
this traditional distributed-system observation and control architecture, and the recent
“MAPE”-loop architecture of IBM [3]. Having compared the approaches, we will identify
what issues would have to be addressed to apply that traditional approach to the problem
of autonomic management of distributed systems. We then discuss the various methods
we are applying in addressing these problems. We close by summarizing our view of the
hard problems in this area.

∗This work was supported in part by IBM Autonomic Computing



Entity
Control

Control
Code

Monitoring Entity

Monitoring Code

Visualization System

Distributed System

(a) Traditional Distributed-Systems Manage-
ment Architecture

Knowledge
Monitor

Analyse Plan

Execute

Managed Element

EffectorsSensors

Autonomic Manager

(b) MAPE-Loop Architecture

2. Mapping Distributed-System Management to the MAPE Loop

The MAPE-loop architecture, developed by IBM [3], is shown in Fig.1(b). While superfi-
cially different from traditional distributed-systems management, it is not difficult to map
from the one architecture to the other. The mapping is as follows:
Managed Element : Sequential entity
Sensors : Monitoring Code
Monitor : Monitoring Entity
Analyze : Visualization System/Person
Plan : Person/Control Entity
Execute : Control Entity
Knowledge : Person/Control Entity
Effectors : Control Code
Having defined the mapping, we now look at these components, and observe in what ways
they are similar, and in what ways they differ.

First note that the managed element within the MAPE model corresponds to a sequen-
tial entity within the distributed-systems management model. This mapping is one-to-one,
insofar as the concerns of both approaches is similar. For example, a Java bean might be
a managed element in the MAPE approach, and a sequential entity in distributed-systems
management approach. However, a critical difference between the two approaches is that
in an AC environment, the managed entity may well be an encapsulated component. That
is, it may not be instrumented in the same manner as its calling entity.

This leads to our second observation, which is that the monitoring code in a traditional
distributed-system management tool will typically have been added explicitly for the pur-
pose of management. It may have been added manually, or by automated code insertion,
but it will be designed for the management purpose. For example, in the debugging con-
text, the relevant compiler option will add the necessary code. In autonomic systems, by

2



contrast, we cannot presume that the system will be instrumented expressly for the pur-
pose of management. While this is the ideal, it is not plausible to presume that various
enterprise software vendors will, in the near future, agree on a single, all-encompassing
format for data collection (notwithstanding the efforts in that direction of approaches such
as the Common-Base Event (CBE) format [8]). In particular, while in the introduction we
observed what the event data should ideally contain, we note that the CBE format does
not satisfy this requirement, nor can we expect legacy systems to be retrofitted with these
desiderata. What this means in practice is that the monitoring entity of a distributed-
system management tool must be reworked to recognize the limitations of the input event
data. In this regard, the Log and Trace Analyzer [1] has done the most-significant work.
It scavenges data from log files of large enterprise systems, and then provides options
for known correlation, heuristic correlation, and a generic plugin framework, allowing for
arbitrary matching of events as required.

Similarly, effectors may not be exactly as desired to the degree that control code is
within an instrumented system. Rather, exiting input mechanisms will have to be adapted
to the needs of the control entity.

Given that the sensor and effector data is likely quite different in the MAPE model than
in traditional distributed-systems management, it might appear that there is little value in
trying to adapt the traditional approach to this new environment. However, observation of
the Log and Trace Analyzer project suggests that wrapping legacy systems and creating
plugins can be effective in creating the illusion of a system that has been purposefully
instrumented for management.

This leaves the remaining elements. With effective sensor/effector wrapping, most of
the existing body of work in the area can then be applied to autonomic computing, though
observing that the intent is to remove the human from the loop in Fig.1(a). We therefore
turn to the question of what the open problems are within the area, as seen from the
perspective of distributed-systems management, and our approaches to those problems.

3. Open Problems and Our Work

Given the mapping we have seen between the two areas, our research work has focused
on bringing research from distributed systems management into the autonomic control of
distributed systems. In this, we have focused on four main projects. First, we have begun
to address problems of scale. Specifically, we are attempting to enable distributed sys-
tems management over orders-of-magnitude more entities than has been the case. While
this work has thus far been in the area of scalable data structures [11], it has begun to
focus more recently on the problem of monitoring cost. Specifically, as the systems be-
come larger, they produce significantly more data. Preprocessing of that data is essential to
enable scalable management. Second, we are addressing the problem of application diver-
sity through the use of event correlators. By flowing correlators through the monitoring
process it is possible to deterministically associate events with tasks [12]. This enables
reasoning over task behaviour, substantially improving problem determination capabil-
ities. Third, we have started to look at predicate detection performance [10]. Efficient
pattern detection will be crucial for autonomic control.

3



Finally, and most recently, we have started to address the problem of when, where and
how much data to gather. The questions we are attempting to answer are first: how much
monitoring is required to determine if more monitoring is required. That is, what is the
least monitoring necessary to allow us to consider the possibility of a problem. Second,
given that we discovered we needed more monitoring information, have we collected
enough to resolve the problem, or did we miss relevant data.

4. Conclusions

In this paper we have summarized prior, very briefly, research on distributed-system mon-
itoring and control, and shown how that work is applicable to the problem of self-managed
distributed systems. We have identified some of the major issues and open problems in
self-management, and discuss the various approaches we are taking to addressing those
problems.

References
[1] IBM Corporation. Log and trace analyzer for autonomic computing. Online documentation

available at: http://www.alphaworks.ibm.com/tech/logandtrace.
[2] IBM Corporation. Object level trace. Online documentation available at: http://www-106.-

ibm.com/developerworks/websphere/WASInfoCenter/infocenter/olt content/olt/index.htm.
[3] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing. IEEE Com-

puter, 36(1):41– 50, 2003.
[4] Deiter Kranzlmüller, Siegfried Grabner, R. Schall, and Jens Volkert. ATEMPT — A Tool

for Event ManiPulaTion. Technical report, Institute for Computer Science, Johannes Kepler
University Linz, May 1995.

[5] Dieter Kranzlmüller. Event Graph Analysis for Debugging Massively Parallel Programs. PhD
thesis, GUP Linz, Linz, Austria, 2000.

[6] Thomas Kunz, James P. Black, David J. Taylor, and Twan Basten. POET: Target-system inde-
pendent visualisations of complex distributed-application executions. The Computer Journal,
40(8):499–512, 1997.

[7] Leslie Lamport. Time, clocks and the ordering of events in distributed systems. Communi-
cations of the ACM, 21(7):558–565, 1978.

[8] David Ogle, Heather Kreger, Abdi Salahshour, Jason Cornpropst, Eric Labadie, Mandy Ches-
sell, Bill Horm, and John Gerken. Canonical situation data format: The common base
event. Online documentation available at: http://xml.coverpages.org/IBMCommonBase-
EventV111.pdf.

[9] Alper Sen and Vijay K. Garg. Partial order trace analyzer (POTA) for distributed programs.
In Proc. Workshop on Runtime Verification, 2003.

[10] Paul A.S. Ward and Dwight S. Bedassé. Fast convex closure for efficient predicate detection.
Submitted to EuroPar 2005 ; available at http://www.ccng.uwaterloo.ca/
- pasward/europar2005.pdf.

[11] Paul A.S. Ward, Tao Huang, and David J. Taylor. Clustering strategies for cluster timestamps.
In Rudolf Eigenmann, editor, Proceedings of the 2004 International Conference on Parallel
Processing, pages 73–81. IEEE Computer Society, 2004.

[12] Paul A.S. Ward, Jiajun Wu, and David J. Taylor. Collecting transaction data in event-
monitoring tools. In preparation.

4


