

Fast and Simple Deployment of a Linux® Cluster

Data Warehouse

by

Belal Tassi

Department of Electrical and Computer Engineering

University of Waterloo

In fulfillment of the project requirement for the degree of

Master of Applied Science

in

Computer Engineering

© Belal Tassi 2007

Abstract

Collections of distributed computers, termed clusters, have been used for decades to help

solve some of the world’s most complicated problems. The popularity of these clusters,

particularly those built with “off-the-shelf” commodity components, has been steadily

increasing over the years, but the cluster-related skills and time budgeted to properly deploy

them have not. This paper examines the current research in the area of Linux cluster-

deployment and associated deployment tools. Subsequently, it discusses one such approach

in detail that was successfully used to automate and simplify deployment of Linux clusters

running an important application that these clusters capably support – namely, a distributed

data warehouse application. Requirements, design decisions, and process flow of the

approach are examined as well as technical details about the tool itself. This tool has

successfully been used by IBM® to deploy clusters at a multitude of sites all over the world.

Lessons learned about this technique from these deployments, as well as potential future

work stemming from these experiences, are discussed.

 2

Contents
1.0 INTRODUCTION ...7

2.0 THE LINUX CLUSTER LANDSCAPE ..9

2.1 WHAT IS A CLUSTER? ...9
2.2 THE MANY FACES OF THE LINUX CLUSTER ..10
2.3 A SURVEY OF CURRENT LINUX CLUSTER DEPLOYMENT RESEARCH12
2.3.1 CLUSTER ADMINISTRATION..13
2.3.2 CLUSTER DEPLOYMENT..15
2.3.3 THE OSCAR AND ROCKS PROJECTS...16
2.3.4 OTHER CLUSTER DEPLOYMENT TOOLS ...20

3.0 A LINUX CLUSTER DATA WAREHOUSE DEPLOYMENT APPROACH22

3.1 THE APPLICATION: DB2 DATA WAREHOUSE..23
3.2 REQUIREMENTS AND DESIGN DECISIONS ..25
3.2.1 CLUSTER TOPOLOGY AND NODE TYPES ..28
3.3 HARDWARE DETAILS...33
3.3.1 ADDITIONAL HARDWARE REQUIREMENTS ..35
3.4 SOFTWARE DETAILS ..36

4.0 THE DB2ISERVER INSTALLATION TOOL...40

4.1 CREATING THE MASTER IMAGE ..40
4.2 CLUSTER DEPLOYMENT ...43
4.3 DETAILS OF THE INSTALLATION SERVER ...46
4.4 DETAILS OF THE CONFIGURATION FILE...49
4.5 DETAILS OF THE SYSTEM CONFIGURATION ...50

5.0 LESSONS LEARNED AND FUTURE WORK ..54

5.1 LESSONS LEARNED FROM THE FIELD ..54
5.2 FUTURE WORK ...57

6.0 CONCLUSION...59

APPENDIX A: CONFIGURATION FILE DETAILS ...61

A.1 CONFIGURATION FILE SPECIFICATIONS...61
A.2 NETWORK CONFIGURATION ...69
A.3 CONFIGURATION FILE SAMPLE ...71

 3

APPENDIX B: ACRONYMS ..72

REFERENCES...74

TRADEMARKS ATTRIBUTION STATEMENT…………...……………………………….76

 4

List of Figures

Figure 1: OSCAR and Rocks Cluster Architecture…………………………………….17

Figure 2: The DB2 MPP Shared-nothing Architecture..………………….…………..24

Figure 3: Typical DB2 Shared-nothing Cluster Topology …………………………...29

Figure 4: A Six-Node DB2 Data Warehouse Cluster Definition and Topology……..32

Figure 5: DB2ISERVER Software Architecture……………………………………….37

 5

List of Tables

Table 1: Current Disk Partitioning (for all nodes in the cluster)……………………..41

Table 2: Current Software versions in the Master Image……………………………..42

Table 3: Pre-install related changes made to the Master Image……………………...43

 6

1.0 Introduction

It has oft been mentioned that in computing there are three basic approaches to improving

performance [1]:

1) Use a better algorithm.

2) Use a faster computer.

3) Divide the calculation among multiple computers.

Since options one and two are not technically or financially feasible in many cases, the third

choice – normally termed parallel or distributed computing – has become the choice for

many large computing problems. To use a house construction analogy, distributed

computing allows a whole team of workers to simultaneously work on building the house

faster – without the need to invent a better house-building technique or to buy the latest

most expensive house-building tool.

The computer cluster is the modern workhorse of the distributed-computing approach – and

for many applications, Linux clusters in particular, are the workhorse of choice. One

application where Linux clusters have really shown their mettle is running distributed data

warehouse systems. Data warehouses are large repositories of an organization’s historical

data – used to contain the raw information needed for decision support systems and

business-intelligence tools (such as data mining), which are an increasingly critical part of the

modern enterprise. Linux clusters are making these large distributed systems feasible from a

 7

performance, technical, and financial perspective for numerous enterprises, educational, and

research organizations.

With large numbers of these Linux clusters being deployed, the ease, speed, and simplicity of

deployment have become critically important issues – especially for organizations such as

IBM which are deploying a multitude of these clusters daily. There is a need for simple tools

to speed deployment, increase consistency, and decrease the technical skills needed to be

able to rapidly deploy a data warehouse system running on a Linux computer cluster.

This paper covers the aforementioned issue in detail. Chapter 2 takes a panoramic survey of

current research in the area of Linux-cluster-deployment approaches and associated

deployment tools. This is followed by details about one such tool - the DB2ISERVER

deployment tool - which was built to help make deployment of Linux cluster’s running the

IBM DB2® data warehouse system as simple as possible. Chapter 3 describes the

requirements, software and hardware design decisions, and overall approach taken by the

DB2ISERVER tool. In Chapter 4, implementation details about the DB2ISERVER

approach and tool are discussed. The tool has been used extensively by IBM to deploy

clusters in the field; lessons learned from these deployments are discussed in Chapter 5. The

chapter ends with a brief discussion of future work that is currently being implemented in

the next generation of this tool. Chapter 6 offers a summary and some concluding thoughts.

Finally, Appendix A contains detailed reference information about the DB2ISERVER tool

and the DB2ISERVER configuration file which is the primary input required by the tool.

 8

2.0 The Linux Cluster Landscape
This chapter is a survey of current research in the area of Linux cluster deployment and

associated deployment tools.

2.1 What is a Cluster?

The term cluster is one of those overloaded computing terms (like “node”) that can have a

plethora of meanings based on context, and hence, should always be explicitly defined when

used. In the context of this paper, a computer cluster is defined as “a group of loosely

coupled computers that work together to accomplish a specific task or tasks but is viewed

externally as though it is a single computer” [2]. One important differentiation is that the

term cluster computing is different from the related, but distinct, field of grid computing. The

term grid computing is generally used to describe multiple computers in different locations

working together across a wide-area network (WAN), typically the Internet. In contrast,

clusters are generally in one location and restricted to computers on the same sub-network.

In general, the significant differences between cluster computing and grid computing are that

computing grids typically are a much larger scale, tend to be used more asynchronously, and

have much greater access, authorization, accounting and security concerns [1].

Why use a cluster instead of just using a larger, more powerful computer to accomplish the

same task? In addition to the fact that for some very large tasks a computer that could

accomplish it on its own has yet to be created, clusters are usually deployed to improve

performance and availability over that provided by a single computer, while typically being

much more cost-effective than a single computer of comparable speed or availability [2].

 9

2.2 The Many Faces of the Linux Cluster

Any computer cluster contains four fundamental parts:

1) The collection of computer hardware that provides the processing power of the cluster.

2) The network that connects these computers together.

3) The I/O storage system used to store the cluster’s data.

4) The distributed software applications that are being run on the cluster.

What components are used for each of these four parts, and how these components are put

together will determine the primary characteristics of the cluster: processing power, I/O

throughput, price, capacity, and overall performance.

Over the past four decades, clusters have been put together in many different ways and have

produced many different types of computing clusters. One very important development in

this progression of clustering technology was performed by Thomas Sterling and Donald

Becker while working for a NASA contractor in the mid-1990s. At that time, when they

created a 16-PC cluster, they effectively pioneered the commodity Linux cluster, under a

name that has in most people’s minds become synonymous with Linux clusters: a “Beowulf”

cluster [3,4]. The Beowulf concept commonly involves using commodity servers and open-

source software to cluster large numbers of inexpensive Linux computers together,

effectively to enable supercomputer power inexpensively. These “commodity clusters”, with

all four fundamental parts of the cluster built from relatively inexpensive and commonly

available components, have brought parallel computing, supercomputing power to the

masses. Academic institutions and other similar organizations that have large and complex

 10

problems to solve, but limited financial resources, were quick to start building their own

Beowulf-like clusters.

How successful have these commodity clusters become? Today, not only can one build one’s

own Beowulf Linux cluster - and many educational facilities and companies are doing just

that – but even more easily, they can be purchased from IBM, HP, Sun Microsystems, and a

host of other major computer vendors. As far back as 2001, there were already 28 Beowulfs

in the Top500 supercomputers list, a running list of the most powerful computers in the

world [5]. It has been proclaimed that Beowulf’s economics and sociology are currently

poised to kill off the other cluster architectural lines – and will likely affect traditional

supercomputer centers as well [5]. Since then, the popularity of Beowulf clusters has only

grown (see current Top500 list at http://www.top500.org), and it is now not unheard of for

even secondary-school classrooms to have their own Beowulf clusters “just to kick the tires”

[5].

Originally, these Beowulf Linux clusters were exclusively used to run applications in the

high-performance computing (HPC) space. This has since expanded to include other

primary uses, in particular, high availability (HA) and load balancing.

High availability clusters are composed of multiple machines but only a subset of these

machines are needed to actually provide the service the cluster is providing [2]. For example,

if 2 out of the 5 machines that make up a database server cluster fail, the distributed database

would continue to run and service requests on the 3 remaining machines. In fact, in most

 11

cases, this failure should be transparent to the connected users, except for potentially

reduced performance.

Load-balancing clusters are built to provide better performance by dividing the work among

the group of computers in the cluster. The classic example is the Web-server cluster,

sometimes termed a “server farm”, in which incoming queries are distributed among all the

servers in the cluster based on a distribution algorithm. The reality is that, in most cases,

there is considerable overlap with these 3 primary uses of clusters: HPC, HA, and load

balancing. For example, a standard HPC cluster would, in many cases, also provide some

high-availability characteristics as well.

2.3 A Survey of Current Linux Cluster Deployment Research

An extensive literature search of published technical papers pertaining to Beowulf Linux

clusters was performed.

Numerous papers dealt with research issues around stateless or “diskless” clusters. Stateless

clusters run without requiring persistent storage from every node in the cluster. The idea is

for this to reduce cost, cut down on noise, lessen cooling requirements, curtail power

consumption, and minimize the number of moving parts in a cluster, thereby improving

reliability [6]. These classes of clusters and associated deployment technologies were ignored

for the purposes of this paper because they are unable to satisfy the requirements of a data

warehouse system.

 12

Many of the research papers focused on performance issues in distributed cluster computing

[7,8]. Other papers focused on the application of these Linux clusters to specific application

domains [9,10]. Moreover, many of the papers focused on deployment and management of

wide-area Grids – normally composed of non-dedicated machines [11]. These topics will also

not be addressed in this paper, as they are unrelated to our specific problem of rapid

deployment of data warehousing clusters.

One area of research that is strongly linked to this paper’s commodity-cluster deployment

focus is that of cluster administration and configuration.

2.3.1 Cluster Administration

System administrators of medium and large-sized clusters are often faced with the need to

perform administrative tasks hundreds or thousands of times – and the traditional way of

doing this is the time-consuming manual approach [12,13].

The team at Argonne National Laboratory have laid out a “scalable cluster management

approach” that they used to automate many of the day-to-day administrative tasks for their

314-node Linux cluster [12]. They define specific nodes in their cluster to be “management

servers” and have them run common administration support services such as DHCP, NFS,

HTTP, TFTP, DNS, and FTP services to the rest of the nodes in the cluster. Their focus

was on how many of these management servers are needed, and how to efficiently distribute

the services among them. Elements of the architecture they found work well include: making

the management servers dedicated (i.e., not available for any other user applications),

specialized hardware configuration of the management servers (i.e., more disk, more CPU,

adequate RAM, etc.), having a “master” management server from which all commands are

 13

issued, and having remote power control across all nodes in the cluster. They also

recommended the following design changes to simplify administrating commodity clusters

that contain hundreds of nodes: demand-based software distribution, eliminating single point

of service management, and a management-server topology, among others [12].

The Los Alamos National Laboratory team looked at a more novel approach to simplifying

cluster administration tasks [13]. They note that administration is typically done via the

“system software stack”, typically composed of the communication library, resource

manager, parallel file system, and system monitor. As the cluster size increases, the role of

this system software becomes increasingly more important. They argue that this system

software stack can be defined as a small set of network primitives available on all nodes in

the cluster. These primitives, essentially a least-common denominator of the system software

components, can subsequently be implemented directly in the hardware on each node

“greatly reducing the complexity of most system software”. As one example, they look at

implementing the popular Message Passing Interface (MPI) communication library directly

on the system Network Interface Card (NIC) for each node. Based on the results of their

experimental case studies, notably not performed on hardware but emulated in their software

environment, they promise some real simplification of the current system software stack on

these clusters [13]. Note that one major drawback of this new approach is that it must be

coupled with future changes made to the Linux kernel that would take advantage of this new

hardware layer.

Researchers at the Swiss Institute of Technology decided to tackle the difficult and presently

time-consuming problem of installing and maintaining software levels across all the nodes in

 14

a cluster [14]. They propose a new aggressive block-based disk-partitioning imaging

approach built on top of their recommended “partition repository.” This approach is

already in daily use by their current system administrators and has shown a substantial

decrease of administrative time in their environment [14].

As the current commodity clusters increase in size, new improved approaches will continue

to be needed to grapple with the time-consuming and tedious administrative tasks needed to

maintain these cluster. However, in order to even have a cluster, another time-consuming

and tedious task, which also requires a great deal of technical skill, must first be conquered:

that of cluster deployment.

2.3.2 Cluster Deployment

Since the introduction of the commodity Linux cluster, it has been recognized that the

number and variety of skills that were needed to effectively deploy and administer a cluster

was one limiting factor to the widespread use of these clusters [1,14]. To deploy a Linux

commodity cluster, the installer would normally have to have technical skills in at least five

of the following areas:

1. Linux

2. Networking

3. Hardware

4. Storage

5. Installing and configuring the distributed application

6. High availability (if applicable)

 15

It has been noted by experts that the skills requirement is a limiting factor and that the

current “effort to adopt, understand, and train computer scientists about clusters and

distributed computing has been minimal” [5].

Dozens of papers have discussed issues around manually building a Beowulf cluster [15-21].

However, after building a few manually, researchers maintain that “it is apparent that the

process of building and maintaining a cluster needs to be automated” [14]. In fact, “the need

for automated installation and configuration tools has been obvious ever since the first

appearance of networked clusters of workstations” [20].

2.3.3 The OSCAR and Rocks Projects

OSCAR (Open Source Cluster Application Resources) is a software package that is designed

to simplify Linux cluster installation [21-23]. The design goal of OSCAR is to include all the

current best-of-class open-source software that would be useful for a cluster in one bundle

and ultimately to move toward the standardization of clusters [1]. Today, OSCAR

dramatically cuts the time needed to successfully deploy a fully functional HPC Linux cluster

as compared to a manual installation where one has to download, install, and configure the

software themselves. OSCAR does this by providing a set of tools that are installed on a

running Linux system that will serve as the “head node” of the cluster. Once installed, these

tools allow the creation of an OSCAR client image that is subsequently used to easily deploy

new nodes in the cluster. OSCAR effectively supports multiple distributions of Linux and is

supported by a large and active community of contributors and users, including many

representing commercial computer vendors [21]. OSCAR also integrates a large number of

 16

diverse software packages, making it a one-stop shop when deploying a fully featured HPC

cluster.

Rocks is a similar Linux-cluster-deployment tool built by NPACI (National Partnership for

Advanced Computational Infrastructure) [24]. Rocks’ major design goal is ease of

deployment and as such automates many of the steps that are required in OSCAR. It comes

on a CD that can be used to deploy the “front-end” node (i.e., head node) directly without

the need to perform this operating-system installation manually. In addition, for the sake of

simplicity, it supports only one Linux distribution, namely Red Hat. Rocks also includes

many open-source cluster tools, many being the same as OSCAR. Furthermore, it also has

the added benefit of supporting deployment on a cluster with heterogeneous hardware [1].

OSCAR, and to a lesser extent Rocks, is very promising and has aided a great deal toward

the standardization of commodity cluster deployment. However, as great as both OSCAR

and Rocks are, at this point they are still not ideal solutions for all Linux-cluster-deployment

scenarios. As can be expected, many of their limitations stem from the design decisions and

assumptions that the toolkit makers have made.

The first and most significant assumption is that these packages are targeted to clusters set

up in a “standard” HPC clustering architecture. This architecture is depicted in Figure 1.

 17

Figure 1: OSCAR and Rocks Cluster Architecture [1, Figure 6-1]

This architecture contains one master or head node and a group of, normally identical,

compute nodes. If one is not running in this configuration, for example in the case of a DB2

“shared-nothing” data warehouse, then things become a lot more difficult1. See Section

3.2.1, Cluster Topology and Node Types, for details about the typical DB2 shared-nothing

cluster topology.

The second issue stems from the fact that each kit is basically a large, complex collection of

individual cluster software [1]. This means that a choice must be made during installation:

keep deployment simple and install everything from the default package, or take the time and

energy to understand what each piece of software does, which packages are actually needed

for each environment, and the toolkit software dependencies. In the latter case, this means

the skill level of the installer must be relativity high; i.e., the individual must be able to

understand what all the packages in the toolkit are, when they are and are not used, etc. This

last point should not be trivialized: the large software set is installed and configured in a

specific order with dependencies taken care of by the toolkits in the default cases. If an error

1 It should be noted that with effort one can stretch the toolkits to make them work in other configurations
but, in general, this requires detailed technical knowledge of the toolkits.

 18

occurs or a mistake is made during deployment, it can be quite unforgiving [1]. In the former

install-everything case, a lot of extra software is often installed and configured that must

subsequently be managed on the system. This adds unnecessary complication and potential

security holes to the environment, and slows down execution unnecessarily.

Third, since both OSCAR and Rocks are pre-selected collections of open-source software,

they do not include any additional proprietary software that would need to be installed. In

some cases, these replacement applications are used to replace an inferior application that

was included in the kits. For example, many proprietary Linux-cluster-administration toolkits

exist, such as the IBM CSM (Cluster Systems Management), that are arguably more powerful

than the included open-source cluster-management tool in either toolkit. If they are to be

included, these replacement choices normally have to be installed and configured manually

afterwards, in addition to having to uninstall the program it is replacing. Commonly the

additional software that must be installed afterwards includes the primarily distributed

application that the cluster will be running. In the case of a dedicated data warehouse cluster,

this is the distributed data warehouse application itself. After successfully using the toolkit,

work must still be performed to install and configure this distributed application on all nodes

in the clusters manually.

Lastly, although in the last few years both toolkits have made great strides in simplifying the

installation, it is still a rather elaborate process [1]. In the case of OSCAR, it is currently an

eight-step process, with that must be done in order - after one manually performs the Linux

installation on the head node. Although none of these steps is extremely onerous, neither is

the process trivial. Rocks is generally easier than OSCAR to use, and does not require a

 19

manual installation of the operating system on the head node or any other of the nodes, but

is still far from a trivial process [1].

2.3.4 Other Cluster-Deployment Tools

In addition to OSCAR and Rocks, other cluster-deployment tools have been developed by

researchers to help deploy various aspects of their clusters in their particular domain.

Researchers at Laboratoire ID-IMAG have developed their own Perl-based tool called

Kadeploy2, which provides automated software installation and reconfiguration mechanisms

on all layers of the software stack [20]. This software, currently implemented as a prototype,

allows users to concurrently deploy computing environments to the same cluster exactly

fitted to their experiment needs, even as their experiment needs change on different nodes

[20]. They place a strong emphasis on fast installation performance and support multiple

deployment methods with measured execution time performance numbers for each type.

Hardware differences within heterogeneous clusters have historically been quite difficult to

deal with. The researchers at the University of California – who developed the NPACI

Rocks clustering toolkit itself - have been researching a new approach that they call

“Description-based installation,” some of which has subsequently been added to their toolkit

[26]. This approach will enable the ability to intelligently share configuration across different

hardware in a heterogeneous cluster – and to not share configuration across hardware when

it should not be shared. Their new XML, Red Hat, Python, and HTTP-based approach does

not use the standard replication-of-configuration-files approach, nor does it require building

a golden image reference [26]. The approach works on nodes in a cluster in groups, which

they term appliances. Their approach enables the tool to intelligently deal with hardware

 20

differences between the various appliances. This includes nodes containing different hard-

drive types (IDE versus SCSI drives) and even major architecture differences, such as x86

versus IntelTM ItaniumTM (IA64) hardware [26]. They go on to validate their approach with

over a 100 clusters that have “significant” hardware and configuration differences among

them [26].

For the remainder of this paper, one specific approach that was successfully used to simplify

the deployment of Linux clusters running a distributed data warehouse application will be

discussed.

 21

3.0 A Linux Cluster Data Warehouse
Deployment Approach

One common distributed application that commodity Linux clusters can efficiently support

is a distributed data warehouse application. A data warehouse is the main repository of an

organization's historical data – effectively a corporation’s digital memory [27]. Data

warehouses contain large amounts of raw information to be used for management's

decision-support systems (DSS), which are used to answer important business questions.

Data warehousing also enables the business to use automated statistical-analysis techniques -

generally termed data mining – to discover important new trends and patterns of behaviour in

the historical information that previously went unnoticed. This potentially vital intelligence

can then be used in a predictive manner for a variety of applications. For example, based on

past historic sales trends in the region for males over the age of 50, what would be the

estimated sales volume for dentures in Asia in 2007? This gathering and harnessing of

historical information has fundamentally changed how important business decisions are

made by modern enterprises.

Not surprisingly, these databases routinely grow to very, very large sizes. The largest

database warehouses have reached into the hundreds of terabytes (TB) in size, and today it is

common to have 5 TB to 20 TB in an organization’s data warehouse [28]. To effectively

handle this amount of data processing and the complex queries that are typically used for

decision-support requests, a distributed database application running on some type of cluster

of computers is required.

 22

http://en.wikipedia.org/wiki/Corporate_memory
http://en.wikipedia.org/wiki/Decision_support_system

One of the major leaders in the current data warehouse space, both from a technology and

market-share perspective, is IBM DB2 [28].

3.1 The Application: DB2 Data Warehouse

The DB2 database partitioning feature (DPF) uses a massively-parallel-processing (MPP)

shared-nothing architecture to allow the database, and the database manager, to be

distributed across up to 1000 physical machines - to handle the thousands of terabytes of

data that could not possibly be handled by a single machine [29].

A distributed DB2 database can consist of one or more database partitions distributed over

the computer cluster. Each database partition is, in essence, a mini-database in its own right.

It has responsibility for its own (and only its own) data, logs, data locking, and other essential

elements that make up a database [29]. This shared-nothing architecture can be seen in

Figure 2.

 23

Figure 2: The DB2 MPP Shared-Nothing Architecture [29]

DB2 has supported running in a distributed clustered-computing environment since the

mid- 90’s [30] and has supported this environment on a Linux Custer since its Version 7.1

release in 2000. In early 2003, IBM released an integrated hardware and software offering

called the DB2 Integrated Cluster Environment (DB2 ICE) that offered a pre-installed and

configured, price-sensitive, Linux cluster to its customers. Since then, updated versions of

DB2 ICE as well as other IBM DB2 Linux-cluster data warehouse offerings – most

significantly its Balanced Configuration Unit (BCU) offerings - have been developed that

hinge on being able to provide a fast and efficient deployment of a Linux cluster data

warehouse.

 24

One of the approaches successfully used in hundreds of cases to make this fast and simple

deployment a reality, was the DB2 ICE Installation Server (DB2ISERVER) approach which

will be detailed in the remainder of this paper.

3.2 Requirements and Design Decisions

The five major requirements2 that drove the design of this approach are the following:

Requirement #1: Laydown and configure all software that is needed during one

install – no further steps should be required post-install to successfully start the DB2

application on all nodes.

One of the greatest frustrations of the manual process of setting up a Linux cluster - as well

as for some of the automated cluster kits - is the number of steps that one must successfully

complete in transforming the cluster from a group of networked hardware to a working

system. It is not an exaggeration to put this number of steps in the hundreds, and for

everything to work, each individual step must be performed perfectly. Making this more

difficult and error prone adds to the many dependencies that exist between these steps. One

mistake during networking setup on one machine will prevent one from being able to start

the distributed database instance many steps later. The installation tool should automate all

required steps including software installations, networking configuration, user configuration,

etc., and manage the dependencies between them automatically. After the installation is

complete, the installer should immediately be able to start the distributed database manger

and begin creating the database.

2 During development of the tools, these were affectionately referred to as “the big 5.”

 25

Requirement #2: Required skill level of installer should be minimal.

The individual installing a Linux cluster data warehouse has historically had to be very

skilled, not only with cluster-related skills described earlier – hardware, networking, storage,

clustering tools – but in this case, also Linux, Data Warehousing, and DB2 skills. This has

been a major inhibitor in the speed with which these clusters can be deployed and ultimately

to the number of clusters being deployed. While it is true, to an extent, that one will

ultimately have to understand many of these areas to properly administer the cluster, the

same demands should not be required from the individual performing the installation. It

should be possible for a person who has no experience in clusters and DB2, and very little

experience using Linux, to successfully deploy a cluster in a short period of time (see

Requirement #5) using this tool.

Requirement #3: The tool must enable successful deployment on a prescribed set of

bare hardware with no need for any initially installed operating system, software,

additional drivers, or software patches to complete.

One of the frustrating consequences of the rapid rise and flexibility of the Linux operating

system is that in many instances Linux drivers or modules need to be updated to enable

successful deployment and/or efficient and secure operation of the distributed application.

This stage has historically been the stumbling area for many deployments; in some cases one

missing or obsolete hardware driver leaves the novice installer looking at a hung Linux install

with no idea how to continue. This is one of the major reasons the decision was made to use

a fully tested “master image” (also commonly referred to as a “golden image”) instead of

using the install-from-scratch approach. These master images will contain all required drivers

and patches and be pre-tested on the supported hardware.

 26

Requirement #4: The tool should deploy a pristine working system every time. A

simple method of verifying a successful installation must be included.

With so many configuration options – colloquially referred to as “knobs” - available at the

operating system and application level, it was decided that to ensure pristine working system

every time, a “master image” approach should be taken. In addition, to minimize any chance

of expensive and hard to isolate mis-configurations, the tool should take responsibility for

all aspects of the deployment; from the complete disk partitioning, to the Linux operating

system installation, to the system-network setup, to the DB2 installation. If there is any type

of error during the installation, then the installer would just re-install that specific node using

the tool, without a need to diagnose and try to recover from this error.

As well, as a consequence of Requirement #2, it is not sufficient to rely on the installer to

have the skill set to ensure that the system is working properly after deployment. Not only is

it not always clear what a “properly” installed system actually means to a non-data warehouse

expert, but also, depending on the method used, this can be a highly time-consuming

process. For this reason, a popular Linux open-source host and network-monitoring

application named Nagios® was integrated into the tool to enable easy visual verification of a

working cluster and required DB2 data warehouse services across the cluster post-

installation. See Section 3.4, Software Details, for more information about the software

stack.

Requirement #5: Rapid Deployment

 27

The deployment of even a moderate-sized Linux cluster can be a very time-consuming task.

Deployment durations of weeks are common in this area. One of the major benefits of

automating the deployment is to greatly shorten this time of deployment. During design of

this approach and the DB2ISERVER tool every attempt was made to make this as rapid as

possible. The rule of thumb target was for the tool to shorten the deployment time by an

order of magnitude – weeks to days and days to hours – when compared to performing a

manual deployment. Thus, if a manual deployment of the cluster normally takes 3 days, using

the tool an installer – regardless of skill level – should be able to deploy the cluster in roughly

3 hours. In almost all cases, this requirement was successfully met.

3.2.1 Cluster Topology and Node Types

In addition to the five major requirements that drove the design of this approach, another

important element is the defining of the cluster topology.

A best-practice DB2 shared-nothing data warehouse has some notable differences from a

tradition HPC cluster setup [31]. The compute nodes, called “data nodes”, each fully own a

complete portion of the database. In addition to these data nodes, three other node types

exist: System nodes, Administration nodes, and Load nodes. Each of these four types of

nodes is configured differently.

When compared with the traditional HPC head node, this functionality is spread across the

System and Administration nodes in a DB2 data warehouse. The Administration nodes also

host important DB2-specific services, such as the DB2 coordinator functionality that accepts

and processes remote requests to the warehouse from the external application(s). Again, this

 28

means the topology used with a DB2 shared-nothing data warehouse is in many ways

different from a traditional HPC setup. An example of a typical DB2 Data warehouse cluster

configuration can be found in Figure 3.

Figure 3: Typical DB2 Shared-nothing cluster topology [25, fig. 24]

 29

The DB2ISERVER tools must allow the installer to define each machine in the Linux

cluster as a specific type of node as understood by DB2 data warehouse best practices

described above. This in turn defines how each node will be exactly configured by the tool

during deployment. This will allow the creation of flexible data warehouse topologies that

make the most sense for each data warehouse cluster being deployed. Generally, these

decisions are made by the data warehouse design team and communicated to the installer.

Details of each node type that is supported are [31]:

System Node: is analogous in many ways to a traditional management or head node. In a

HPC cluster, it is responsible for managing the overall cluster and to be available as the

system management, installation, and configuration arm of the cluster. It can also be used as

the failover node for the first administration server in a high-availability setup. Note that

although very similar to a traditional management node, the system does not perform

scheduling nor does it hold the coordinating management information for DB2 that resides

on the first administration node.

Administration Node: is responsible for the DB2 coordinator functionality, that is to say,

the node by which the external users will connect to the cluster. The first administration

node defined will also contain the DB2 system catalogues (the important meta-data tables

that are created and maintained for each database); as well, it runs the NFS service needed to

export the distributed directories as needed by the DB2 DPF feature. It is recommended to

have the administration node equipped with more memory then the rest of the nodes

especially in the case of a large number of concurrent users connecting to the cluster.

 30

Data nodes: are the workhorses of the DB2 Linux cluster. They each operate and

effectively own one subset of the overall data warehouse cluster. Users normally do not

connect to those nodes, and they need no external connectivity whatsoever. In many cases,

for simplicity in management and security, it is best not to connect those systems to the

existing external network.

Load nodes: are optional nodes that are responsible for processing all of the extract,

transformation, and load (ETL) work for the cluster. It is a recommended best practice to

isolate ETL on a node in the cluster to be used exclusively for ETL work, to ease the

burden of workload management especially when a dedicated ETL tool is being used.

An example nodes definition and resulting cluster topology for a six-node cluster is shown in

Figure 4.

 31

Admin
Node

Admin
Node

System
Node

Data
Node

Data
Node

Data
Node

DB2 Cluster

External
Clients

External
Clients

Figure 4: A Six-Node DB2 Data Warehouse Cluster Definition and Topology

 32

3.3 Hardware Details

The DB2ISERVER tool is built to officially support a pre-determined set of hardware as

prescribed by the DB2 Data Warehouse best-practice team for Linux [31]. Among other

benefits, strictly defining support to an official set of pre-determined hardware allows users

of the tool kit to rapidly deploy a DB2 Linux data warehouse cluster into a pre-tested

environment, where they are assured of rigorous pre-testing of the deployment performed

in-house before it being performed live on the customer site. Pre-identification of supported

hardware, in conjecture with the general pre-built master-image approach applied by the tool

kit, assures the number of failed field deployments will be close to zero.

The specific hardware configurations supported have changed very frequently – and will

continue to do so – based on the current market conditions and the extensive experience of

the recommending IBM team [31].

The number of types of servers that are currently supported is more than 10 and will

continue to grow. The servers have all been IBM System Servers running on Intel x86 and

AMD x86_64 architectures. The server form factors that were specifically supported were:

• Rack servers with SCSI internal disks,

• Rack servers with external disk storage,

• Blade servers with internal SCSI disk storage, and

• Blade servers with external disk storage.

 33

As part of the deployment, the DB2ISERVER tool will perform the disk partitioning of the

first internal hard drive. This first hard drive will contain the operating system, as well as all

installed applications including DB2. A consequence of this automatic partitioning is that the

size of this hard drive becomes a minimum system requirement for each node in the cluster.

Currently the requirement is for this first hard drive to be at least 733 Gigabytes in size

before disk formatting.

The networking type supported by DB2ISERVER is either Ethernet, typically gigabit variety

although all varieties are supported, or Infiniband (IB) high-speed interconnect. Note that

the type of each network must be specified in the xcluster.cfg configuration file at time of

deployment and this must correspond to the hardware found on the machines. With respect

to network security, it is generally recommended to have a company’s data warehouse placed

in a secure data canter with no Internet conductivity directly to any of the nodes. Typically

only the cluster administrator and the DB2 client applications will have the ability to access

the cluster both directly from the corporate intranet via the System node and Administration

node, respectively.

There is no minimum requirement on the amount of RAM memory on the nodes imposed

by the DB2ISERVER tool, although DB2 itself does impose a 512 MB minimum to run.

3 73 GB is a common SCSI hard drive size

 34

Lastly, it should be noted that although a specific set of hardware is documented to be

officially supported, the DB2ISERVER tool has successfully been used on a host of other

x86_64 hardware of varying configurations, including those from hardware companies other

then IBM. As described above, the primary requirement is a minimum prerequisite disk drive

size on the first hard drive of each of the node in the cluster. However, if non-official

hardware is used, there is no guarantee that all required hardware drivers and security fixes

are included in the kit, which increases the likelihood of some type of failure or problem

during or after deployment.

3.3.1 Additional Hardware Requirements

In order to develop and maintain the DB2ISERVER tool, two important machines, or most

commonly virtual machines, are required by this approach. Note that these two machines are

not per cluster – it is sufficient to have two machines (or virtual machines) for an unlimited

number of clusters being deployed.

These machines are:

• Master-Image Machine: This machine will hold the master image. Having the master

image pre-installed on a dedicated machine, or virtual machine, greatly simplifies any

future modifications that must be made. Changes are applied directly to the master-

image machine; this machine is subsequently copied into a new image which then

replaces the older image on the Installation Server. See Section 4.1, Creating the Master

Image, for details about this process.

 35

• Installation Server: This machine is configured as a standard Linux installation server4

as well as holding the master image and the system-configuration code that is used to

image and configure each node in the cluster. The Installation Server can either be

automatically generated on a deployed system node or can be a different machine

external to the cluster – such as a native Linux notebook or commonly a VMware®

virtual machine. To use the system node as an Installation Server, it must first be created

itself through the use of an external Installation Server. An external Installation Server is

made available and distributed as a VMware virtual machine that can be run on any

existing VMware Workstation 5 system. Installers normally receive and start using the

DB2ISERVER tool by downloading this pre-configured Installation Server VMware

virtual machine. See Section 4.3, Details of the Installation Server, for more information

about the Installation Server.

3.4 Software Details

As a core requirement (requirement #1), all software must be laid down on the cluster

during an integrated installation; with all software installation and configuration performed in

one automated installation with no manual intervention needed.

The current software architecture used by the DB2ISERVER tool and deployed onto the

Linux clusters is shown in Figure 5 below.

4 The technology used varies between Linux distributions. Currently, DB2ISERVER supports Novell’s
SUSE Enterprise Linux (SLES) distribution and hence uses its AutoYast Linux Installation server.

 36

Linux Distribution

System Configuration Code

DB2

NAGIOS FAStT SM DSH

Figure 5: DB2ISERVER Software Architecture

At the base of the software architecture is the Linux operating system. The currently

supported Linux distribution that the tool supports is Novel SUSE Enterprise Server

versions 9 and 10. Other than the time and resources necessary to produce and maintain a

new master image, there is no technical reason why other Linux distributions cannot also be

supported by this approach.

On top of the Linux distribution setup sits a set of DB2ISERVER system-configuration

code that automatically customizes each specific node for their function in the cluster,

performing configurations such as the setup of hostnames, TCP/IP addresses, necessary

gateway functions, time setup, as well as setting up secure user access across the clusters.

This system-configuration layer can be used any time afterwards to change the setup, if

necessary, post-deployment; for example, when moving a cluster between data centers.

 37

At the top of the architecture, is a minimal set of application blocks, each with a specific

function that will vary as time progresses and the needs of the cluster changes. At this time,

the software includes the DB2 distributed database application itself, as well as the Nagios

system-management application, IBM FAStT Storage Manager, ServeRAID manager,

db2top, LSI® Megaraid Storage Manager, among others. A simple distributed shell (dsh) is

also included in this layer.

Nagios is a popular Linux open-source system and network-monitoring application [32].

Nagios allows monitoring of the nodes in a cluster as well as services (distributed and

otherwise) running on these nodes and will send an automatic alert if service or host

problems occur. Contact notifications can be sent via e-mail, pager, SMS, or any user-

defined method. One of the strengths of Nagios is its high level of customization: it provides

a plug-in design that allows development of custom checks by using standard programming

languages such as Perl, Python, and C++, among others. System Administrators can monitor

the hosts and services and manage Nagios through an optional Web interface. Nagios also

has the ability to implement redundant monitoring hosts.

A Linux cluster deployed using the DB2ISERVER tool will have the Nagios monitoring

host automatically installed and configured on the System node and is used by the one

deploying to easily verify successful cluster installation.

 38

The complete software stack is provided as a single image that contains all necessary services

and software components described above. The specific building blocks are then configured,

enabled or disabled accordingly, during deployment of each node in the cluster. Since the

software stack will be installed from a master image, the exact contents of this stack can and

does change over time. To make an update to a current software version, or to add some

new software to the stack, all that is required is a one-time installation or update to the

master-image machine. This update is performed once by the DB2ISERVER maintenance

team, and distributed as an updated Installation Server virtual machine to all users of the kit.

See Section 4.1, Creating the Master Image, for additional details about the software version

used by the current version of the tool.

 39

4.0 The DB2ISERVER Installation Tool
This chapter will detail specifics about the DB2ISERVER installation tool developed at IBM

to ease deployment of a DB2 data warehouse Linux cluster.

4.1 Creating the master image

The ultimate target of the deployment is the creation of a fully running and properly

configured DB2 data warehouse Linux cluster. The creation of a master image is the first

step towards this goal. The master image used by the DB2ISERVER tool has been designed

with the following criteria:

• Ensure the broadest possible support for boot devices in the Linux kernel including the

normal Adaptec SCSI controller used by IBM, the IPS driver for the ServeRAID

adapter, and support for BusLogic® and QLogic® network drivers.

• All needed packages are on one single image that is used by all node types to simplify the

setup and keep the distributed Installation servers as small as possible.

• All components and drivers are updated to the latest stable, tested and validated level as

recommended by the DB2 for Linux design team.

The disk layout created for each node in the cluster will be identical to each other as well as

to the disk layout on the Master-Image Machine. It is detailed in Table 1.

 40

Disk/Partition Size

(MB)
Mount point Purpose

All nodes
/dev/sda15 100 /boot Kernel and boot loader

partition
/dev/sda2 5000 / (RESCUE) Small rescue system for

each node
/dev/sda3 20000 / (PROD) Production OS core
/dev/sda5 16000 Swap Swap space 2x default

memory
/dev/sda6 10000 /var Independent /var to

preserve the OS stability
/dev/sda7 10000 /tmp Independent /tmp to

preserve the OS stability
/dev/sda8 Rest of

sda
/db2data DB2 home directory on

this machine

Data node
/dev/sdb1 360000 /db2data1 RAID5 array plus one hot

spare
/dev/sdc1 360000 /db2data2
/dev/sdd1 360000 /db2data3
/dev/sde1 360000 /db2data4

Table 1: Current Disk Partitioning (for all nodes in the cluster)

The master image copy that is used by the DB2ISERVER Installation server is built by

taking a very simple full tar backup of a Master-Image system. tar is a simple yet very

powerful UNIXTM utility that allows a file ‘archive’ copy to be created of any set of

directories on a system – even the entire file system itself. The following tar command is run

on the Master-Image machine to create the master image copy:

5 Note that in Table 1, the term /dev/sda is generically used to refer to all disk device types.

 41

tar –cpzvf image001.tgz / --exclude=proc/kcore

This single “golden” image file is then used as the base image for nodes in the cluster,

regardless of the node type. At this time, this file contains all the software installed during a

default SUSE Enterprise Linux 9 or 10 install in addition to the files listed in Table 2.

Package Source/Owner Current Version
IBM DB2 UDB ESE V9.1 IBM DB2 V9.1 (Fixpack 1)
ServeRAID Manager IBM 8.12
ServeRAID agent IBM RaidMan-8.12
IB driver Voltaire ibhost-v3.4.5_12
IB driver Mellonox 1.8.0
Distributed Shell (dsh) IBM CSM csm.dsh-1.6.1
Apache Apache Foundation apache-1.3.29-71.15
Nagios http://www.nagios.org Nagios-1.2-73.1
FAStT Storage Manager IBM 9.1 V15
IBM® SDK for Java™ IBM IBM SDK for Java 2-1.5.1
SanSurfer Pro 2.0.30 build
58

QLogic 2.0.30 build 58

AutoYast 2 (SUSE ONLY) Novell autoyast2-2.9.53-0.2
Q Logic Drivers QLogic qla2xxx 8.01.01

qla2300 8.01.01
qla2xxx_conf 8.01.01

Open IPMI http://ipmitool.sourcefo
rge.net/

OpenIPMI-1.3.11-0.2

IPMI Scripts IBM 1.0

Table 2: Current Software versions in the Master Image

In addition to installing the additional software to satisfy Requirement #1, other changes

were made to the master image as required to support Requirement #3 – namely, the

automatic changes applied to any system configuration or system parameter to ensure an

optimal running and secure DB2 data warehouse Linux cluster. Table 3 below lists some

current pre-install changes made directly to the Master-Image machine – and hence to the

master image – to fulfill this requirement.

 42

http://www.nagios.org/
http://ipmitool.sourceforge.net/
http://ipmitool.sourceforge.net/

File Changed Change
SLES OS files Applied all current SLES maintenance and security

fixes to the system.

~db2inst1/.ssh/id_rsa
~root/.ssh/id_rsa
/sbin/.ssh/id_rsa

Generate ssh keys for these two users and the
system daemon

/usr/RaidMan/RaidAgnt.pps Ensure this line exists:

agent.enable.security=false

/etc/sysctl.conf

Ensure these lines exist:

vm.swappiness = 0
vm.dirty_ratio = 10
vm.dirty_background_ratio = 5

Nagios configuration files Many changes were made to support DB2 out of
the box.

/etc/sysconfig/kernel Ensure this line exists:

INITRD_MODULES = “mptbase mptscsih ips
qla2xxx_conf qla2xxx qla2300”

/etc/modprobe.conf.local Change the line

"options qla2xxx ql2xfailover=0 configrequired=0"

to:

"options qla2xxx ql2xfailover=1
ConfigRequired=0"

Table 3: Pre-install related changes made to the Master Image

4.2 Cluster-deployment

Following the physical assembly of the hardware, four simple deployment steps - described

below - are used to rollout a Linux cluster using the DB2ISERVER tool.

 43

Before installation has begun, a quick hardware check should be performed. It is

recommended to quickly check over and write down the current BIOS levels of the

machines and verify that no critical fixes are missing. During this quick check, all the RAID

volumes must be created and a short power-up test is recommended.

The actual installation works as follows:

1.) The first step involves ensuring the proper services are started on the Installation Server.

To do so, run the script called “start.sh” found in the /tftpboot directory off the

Installation Server.

2.) The second step is the gathering and validation of the existing hardware, cluster

topology, and network layouts. To do so, the primary MAC addresses of the Ethernet

network adapter is located and used to uniquely identify each node in the cluster (it is

highly recommended to have this information written on the front of a large cluster

anyway). Subsequently, each node is defined as a system, administration, data, or load

node, depending on its intended function. The list is entered into the DB2ISERVER

configuration file – called the xcluster.cfg file - with the selected parameters for the

network and function inside the cluster.

 44

3.) Next, the nodes can be powered on. When booted, they will automatically connect to the

installation server and start their installation (see below for details). For logical flow, it is

recommended to begin installation of the system node first, followed by the

administration nodes, before beginning all the data and load-node installations. This will

ensure that the nodes will be complete and bring themselves up in a proper fashion (i.e.,

with the system and administration nodes powered up first).

4.) During installation, the operating system, DB2, and all higher-level building blocks are

installed, while all provided information is configured, and the setup is completed. A

check through the Nagios console on the system node (available from any Web browser)

should show all the correctly installed nodes up and running properly. In the case of

wrong TCP/IP addresses - or, in fact, errors of any kind - each node can be re-installed

as many times as necessary until the setup is satisfactory.

Analyzing steps 3 and 4 from above in greater detail, each node goes through the following

seven steps:

1. The node is booting cold into a network boot (depending on the BIOS of the system,

this happens automatically or needs to be initiated manually once usually by pressing F12

during bootup).

2. The node picks up a DHCP network boot address from the Installation Server together

with the direction for the network boot to load the boot file “pxelinux.0” - which it does

via TFTP.

 45

3. The PXE boot strap initiates the download from the PXE configuration file, which itself

is a pointer to the Linux kernel, INITRD file, and the appended boot parameter.

4. The Linux kernel and the INITRD file is transferred via TFTP to the machine and the

boot strap initiates the installation based on the pre-set installation parameters without

any user interaction.

5. As part of the installation of the rescue system, the primary (i.e., First) hard drive is

partitioned as described in Table 1.

6. After the core installation of the rescue system, the production system master image is

copied to the proper partition. In addition, the xcluster.cfg configuration file is

transferred from the Installation server to each node in the cluster to be used during

configuration6.

7. All system configuration is performed based on the information provided in the

xcluster.cfg file. Section 4.5, Details of the System Configuration, looks at this stage in

more detail.

4.3 Details of the Installation Server

The installation server uses three important services to deploy each node in the cluster.

All these services can be configured for permanent operation with the Linux command:

chkconfig <service name> on

6 This configuration file– as well as the complete installation logs - can be found in the /root/.db2ice
directory post install.

 46

This command will start the services at the next reboot automatically. The following

command will turn off the service permanently:

chkconfig <service name> off

Note when using the Installation Server VMware produced by the author, all services can be

enabled by running the script “start.sh” found in the /tftpboot directory.

These three important services are:

Service #1: DHCP server

The DHCP daemon provides the initial boot addresses during the installation cycle. The

provisioning of the DHCP addresses is important, especially if the cluster is installed with its

own private network. The DCHP address also comes with the critical information for the

BOOTP/PXE process-related information (where to get the pxelinux.0 file). The service can

be provided from an outside resource. The configuration for the DHCPD server is located

in the file /etc/dhcpd.conf.

The service uses the range 192.168.254.1 to 192.168.254.250 for the setup process. The

system node should have the default boot address 192.168.254.254. Of course, those

addresses can be easily changed in the setup scripts. All DHCP addresses get logged in the

file /var/log/messages for debugging purposes. The DHCPD daemon is not needed for

normal cluster operation and can be switched off at this point.

 47

No other DHCP servers should be running in the environment because this will conflict

with the installation server’s DHCP server7.

Service #2: TFTP server

The TFTP server is the most rudimentary file server provider. It is needed for the transfer of

the boot image. Per definition, this server can be created as a standalone service or as part of

the XINETD service. The TFTP server resides in the directory /tftpboot, which is also the

default share for the NFS server-based installation. The critical files in the directory are:

1. pxelinux.0 (pxelinux boot file)

2. pxelinux.cfg/default (pxelinux configuration file)

3. *.profile files

Service #3: NFS server

The NFS server is used to provide access to the software on the installation server and does

this by sharing the /tftpboot directory. It contains the production master image, the actual

installed software, as well as the System-Configuration perl scripts. This sharing is only

needed during installation and upgrades, and can be disabled afterwards.

7 This is particularly easy to miss when running the installation server inside VMware, which might be
running its own DHCP server available to each virtual machine. In this case, the VMWare DHCP server
must be turned off.

 48

4.4 Details of the Configuration File

The sole input that is required from the installer to deploy the Linux cluster is to fill in one

configuration file: namely the xcluster.cfg file. This file can be found in the /tftpboot

directory. This important file contains a list of all the machines that will make up the cluster

– each uniquely identified by the MAC address of its first Ethernet adapter (eth0). In

addition to identifying the machines in the cluster, it allows specification of the configuration

for each machine in four major areas:

• Cluster Node Type: Indicates whether the machine should be configured as a System,

Administration, Data, or Load node. See Section 3.2.1, Cluster Node Types.

• Network Information: Indicates the requested network settings for each node in the

cluster. This means the hostname, network adapter type, TCP/IP addresses, net masks,

and default gateway will be identified for one or two networks on the cluster. The system

configuration code will automatically configure these network settings on each node

during deployment.

While the network can be configured in any way chosen by the person performing the

installation, it is normally recommended to configure the cluster as a standalone cluster

with two networks – one an Ethernet management network (e.g., 192.168.x.y), and one

dedicated high-speed network for DB2 Fast Communication Manager (e.g., 172.16.x.y).

The connection to the corporate user network is established – usually only on selected

machines in the cluster - through additional available network ports.

 49

• DB2 Configuration: Indicates the mandatory user names and new passwords for the

three default DB2 users (instance owner, DAS owner, and fenced user ID) as well as the

DB2 partition numbers for each node. Note, the user names must match the user names

that exist in the installation image being used.

• Nagios Configuration: If Nagios is used in the Linux cluster, the mandatory Nagios

settings needed to deploy it must be indicated. Currently, this consists of only the Nagios

administrator user name, password, and a contact e-mail address. Using this information,

the post-imaging System Configuration code will automatically configure Nagios to

monitor all machines in the cluster on the system node (if present in the xcluster.cfg file,

of course; if no system node is present, no configuration will occur). The Nagios

administration console can then be run on any Web browser on this System node.

Note that the text file format has been designed to be simple and flexible and is structured to

be extendable for future needs. The xcluster.cfg file specifications, as well as a sample

completed xcluster.cfg file, can be found in Appendix A of this paper.

4.5 Details of the System Configuration

The System Configuration program is a Perl program that will run automatically after the

master image has been laid down and un-tarred on each node. Its purpose is to perform all

configurations needed for each node based on the node type. The system configuration code

is automatically launched after successful imaging of the production operating system on

each node. After the configuration code has completed successfully, the node is rebooted to

 50

apply all the new system settings and verify proper hard-disk booting of the newly

configured system. This reboot ends the installation for each node.

Currently the following elements are configured on each node on the cluster:

• Set IP address for first network

• Set IP address for second network (optional)

• Set hostname for first network

• Set hostname for second network (optional)

• Set default network gateway

• Set up the name resolution for all machines in the cluster

• Set up the machine timezone

• Set up root, DB2, and other required users and their passwords on the system

• Set up ssh no password logon between machines

• Set required environments variables for root (.bashrc)

• Set up dsh configuration for root

In addition, the following elements are configured based on the type of node that is being

deployed:

SYSTEM NODES

 51

• Enable the proper services for a SYSTEM NODE (rsh, nfs, nfslock, nfsserver, xinetd,

rlogin, apache , nagios).

• Set up the .rhosts file in DB2 instance owner

• Configure the Nagios application to monitor the cluster

FIRST ADMINISTRATOR NODE (First node of type ADM in the file)

• Set up the db2nodes.cfg file in instance home

• Set up the .rhosts file in instance owner

• Set up the exports file to export instance home

• Set up the DB2 registry values for admin tools (default.reg)

• Enable the proper services for a FIRST ADMINISTRATOR NODE (rsh, nfs, nfslock,

nfsserver, xinetd, rlogin).

• Mask out passwords from xcluster.cfg file

NON-FIRST ADMINISTRATOR NODES

• Mount the instance directory in the fstab file

• Enable the proper services for a NON-FIRST ADMINISTRATOR NODE (rsh, xinetd,

rlogin)

• Mask out passwords from xcluster.cfg file

DATA & LOAD NODES

 52

• Mount the instance directory in the fstab file

• Enable the proper services for a DATA NODE or a LOAD NODE (rsh, xinetd, rlogin)

• Mask out passwords from xcluster.cfg file

 53

5.0 Lessons Learned and Future Work

5.1 Lessons learned from the field

The DB2ISERVER tool has been used successfully in many engagements around the world

by different IBM personnel to deploy Linux clusters running DB2 varying in size from 2 to

more then 64 nodes. Many lessons were learned during these engagements.

The most important is that the approach did end up fulfilling almost all of its objectives.

Requirements #1, #3 and #4 were all met by the nature of the design decisions made during

the development of the tool and subsequently verified during the tool’s usage in the field.

The tool installed and configured a pristine working system, in one install, onto the

supported bare hardware quite easily. The Nagios visual method of verifying a successful

installation was well received by both those deploying and users of the cluster alike, with

Nagios’s effective historical logging and visual report-generating features viewed as an added

bonus by cluster users.

Using the DB2ISERVER tools has drastically reduced the time needed to deploy a cluster:

generally by an order of magnitude, from days to hours. A cluster installation that normally

took 2 or 3 days can now be performed in 2 or 3 hours. In addition, once a successful install

has completed, the imaging approach means that the installed system has worked properly

every time. There are no further steps necessary in order to start creating the database on the

data warehouse cluster. The time to install each node, or a group of nodes up to eight, is

anywhere from 5 to 15 minutes, depending primarily on the speed of the network and the

 54

speed of the local disk on each system. This was all deemed to easily meet and exceed the

rapid deployment requirement (i.e. requirement #5).

The results with respect to Requirement #2, namely the required skill level of the installer,

were mixed. In general, as per the stated objective, it was shown over and over again that it is

possible to have a person with minimal cluster, Linux, and DB2 skills successfully perform

the cluster-deployment. In one case, an internship student who had only been using Linux

for two weeks, had minimal UNIX, DB2, and TCPIP networking experience, and had never

deployed a cluster before, successfully performed a 16-node Cluster-deployment using the

tool. However, the one important caveat to this is that it was found the installer must be

trained on proper usage of the DB2ISERVER tool itself. It was found that a two-hour

training session on how the approach works and using the tools, most importantly how to

start the installation server and properly fill in the configuration file, was critical to the

success of the deployment. Without this training, the probability of failure by first-time

installers, at some stage in the deployment, is very high.

What were the problems that the installers ran into? By far the most common cause of

failure was networking-related issues. This is perhaps not surprising since networking is

generally regarded as one of the most difficult aspects of clustering technology. In addition

to the always present issues of knowing how to choose proper networking values and

physically wiring all the networks properly, there was the issue of proper network-switch

configuration. Depending on how it was configured out of the factory, one might need to

update or remove some preconfigured VLANs (Virtual Local Area Networks) and might

need to configure the switch to prevent it from suppressing the DHCP server on the

 55

network. Since, in general, these steps are very switch specific, and the configuration from

the factory tends to be different in different locations of the world, it was found that this

road block was difficult to overcome via automation or even documentation. As well, if the

installation server being used is a VMWare virtual image (which is how the installation server

is deployed at IBM), those new to VMware commonly ran into problems with the VMWare-

specific networking between the guest virtual machine and the host machine and other

machines in the cluster.

In addition to the networking tool-usage wrinkle above, there were some negative aspects of

the approach itself. The single master image helped keep things simple – mostly for the one

developing the master image and other aspects of tool development – but in some cases, the

“single master image” approach limited the flexibility of what can be performed on different

nodes. If anything needed to be added to the master image that was only useful for one of

the node types – for example, a cluster-administration tool for the system node - it would

also be placed on all the other nodes in the cluster, and although it does not have to be

automatically configured (since the configuration code is node aware), it would be present on

the data, administration, or load nodes as well. This type of master image “bloating”

occurred as time progressed and produced a type of resistance to node-specific additions to

the kit.

Lastly, some users of the tool commented that the collection of the first MAC addresses

from each node in the cluster and having to enter them into the configuration file was a

time-consuming and error-prone step.

 56

5.2 Future work

Overall, the DB2ISERVER approach and the tool itself were found to be effective and

useful. One consequence of this is that new-feature requests have been solicited by users of

the tool. The most requested features are those that will further automate current time-

consuming tasks:

• Integrate automatic High-Availability setup and configuration into the tool.

• Integrate automatic external-storage provisioning into the tool.

• Automate the creation and configuration of the production data warehouse database,

table spaces, and other higher-level data objects into the tool itself.

• Automate the configuration of a cluster Network Time Protocol (NTP) server.

Work has already started on the next generation of the DB2ISERVER tool. This new tool

will fix some of the limitations of the current tool described in Section 5.1, Lessons Learned

from the Field.

The largest modification to the current approach that will be found in the new tool is that it

will no longer image each server using the same master image: instead, only the system node

will be imaged via a master image. This master image, and hence the system node, will be a

preconfigured install server that can be used to install (not image) the remaining nodes of the

cluster. IBM’s Cluster Systems Management (CSM), a cluster management tool for IBM

System p™ and System x™ clusters, will be integrated into the system server and used to

quickly deploy all the other nodes in the cluster. A single script will be automatically built at

the system node during the deployment time that will initiate the installation on the

 57

remaining nodes. This approach will give the flexibility to deploy each type of node

differently, based on mixing and matching the available software on the system node, and

still preserve the simplicity of setup and the little clustering skill required, as the system node

will be setup after its deployment.

Some of the other smaller, new features, of the new tool will include:

• The ability to deal with more than two network adapters on each node

• The automatic setup of the Baseboard Management Controller (BMC) network on each

BMC-enabled cluster. BMC is a specialized embedded chip that is found on most IBM

System x servers that supports the Intelligent Platform Management Interface (IPMI)

architecture used for system management.

• The automatic setup of a NTP server on the management node to automatically keep the

system time consistent across the cluster

• Simplification of how the network information is entered into the xcluster.cfg file to

minimize chance of error

• Support of a larger set of hardware, including the newer dual and quad-core IntelTM and

AMDTM based servers. The DB2ISERVER tool will automatically configure an optimal

number of DB2 database partitions on each data node based on the number of cores

that are present on the server.

 58

http://en.wikipedia.org/wiki/Intelligent_Platform_Management_Interface
http://en.wikipedia.org/wiki/Computer_architecture

6.0 Conclusion

As the modern work horse, used to efficiently and inexpensively run software applications

requiring intensive computing power, commodity Linux clusters have come a long way in

the last decade. Linux clusters are now being deployed in ever-increasing numbers all over

the globe. The ease, speed, and simplicity of deployment have become critically important

issues for organizations deploying them in large numbers. There is a need for automated

tools to speed deployment, increase consistency, and decrease the skills needed to be able to

effectively deploy a dedicated Linux cluster.

After surveying the current research in the area of Linux-cluster-deployment, it was

concluded that the current state of the art in this area has managed to automate, and to a

lesser extent standardize, much of the deployment process. However, there is still work to be

done. These tools and approaches still require the one deploying to posses a minimum skill

set; and, especially when deploying a custom distributed application, require a great deal of

work to be performed by the installer.

The specific tool that is the focus of this paper, DB2ISERVER, was developed by IBM to

help make deployment of Linux clusters running their distributed DB2 data warehouse

system as simple and fast as possible.

 59

Five major requirements drove the design of the DB2ISERVER tool and, based on the

extensive field usage, four of them (R#1, R#3, R#4, and R#5) were completely fulfilled

successfully. The tool installed and configured a pristine working DB2 data warehouse

system, in one install, onto the supported bare hardware effectively. The remaining

requirement (R#2), that the required skill level of the one installing the cluster be minimal,

had mixed results. It was found that the one deploying can have a minimum skill set from

those skills that are usually needed to effectively deploy a cluster, namely hardware,

networking, Linux, and DB2 skills, but that they must now be trained in a new skill: basic

knowledge about how to use the DB2ISERVER tool itself. This skill can usually be

successfully obtained during a two-hour hands-on training session.

The DB2ISERVER tool has been used extensively by IBM to deploy clusters in the field;

lessons learned from these deployments are many and were discussed in detail. One major

finding is that although the “master image” approach provided many benefits around

simplifying the deployment and ensuring a pristine and working system, it did limit some of

the flexibility of the tool with respect to differentiating the software stack on nodes with

different roles in the data warehouse cluster.

A new version of the DB2ISERVER tool is currently in development. This new version will

fix some of the shortcomings of the current tool as well as include some new features

requested from those using the tool in the field.

 60

Appendix A: Configuration File Details

A.1 Configuration File Specifications

The xcluster.cfg file is composed of three sections, each delimited by the following labels:

[KEYWORDS]

[NETWORK]

[NAGIOS]

The sections [KEYWORDS] and [NETWORK] are required. The [NAGIOS] section is

optional; Nagios will be configured for use on the System node if, and only if, this section is

present in the xcluster.cfg file. The order of the sections is important and should always

follow the order above. The file itself is terminated by an empty section entitled: [END]

Section: [KEYWORDS]

The [KEYWORDS] section contains a list of keywords and their associated values that are

used for DB2 UDB configuration as well as general network configuration for all nodes in

the cluster. Currently valid keywords include:

KEYWORD EXAMPLE

VALUE

REQ? DESCRIPTION

NODE_PREFIX XCLUSTER No A prefix that can be appended to

each hostname in the cluster. It

 61

is used as a typing shortcut

when all nodes in the cluster

will be given an identical prefix

(recommended).

NETWORK_GATEWAY 192.168.1.1 Yes This address will be configured

as the default gateway on each

node in the cluster.

DB2_PRIMARY_NETWORK eth0 Yes This identifies the network,

identified by this network

adapter name, that will be used

as the primary network for DB2.

This is the network that will be

identified in the db2nodes.cfg

file as well as the one that will

be used by

rsh/db2_all/nfs/db2start etc.

If only one network adapter is

provided in the [NETWORK]

section it must match this

adapter. If two networks are

provided, one of them must

match this adapter.

 62

FCM_SECONDARY_NETW

ORK

ipoib0 No This identifies the network that

is used as the network for DB2

Fast Communication Manager

(FCM). Usually this is a high-

speed interconnect network.

This keyword should only be

specified if two networks have

been specified.

TIMEZONE US/Central Yes This is the time zone that will

be configured on each node.

The value must be provided in

the standard Linux format as

found in the “clock” file.

ROOT_PASSWORD root9man Yes This is the password that will be

set for the root user on each

node. Note: This will

automatically be masked out of

the xcluster.cfg file after

installation.

INST_USERNAME db2inst1 Yes This is the username of the DB2

instance owner. This must

match the username found in

 63

the installation image.

INST_PASSWORD db2admin01 Yes This is the password that will be

set for the DB2 instance owner.

Note: This will automatically be

masked out of the xcluster.cfg

file after installation.

DAS_USERNAME dasusr1 Yes This is the username of the DB2

Administration Server (DAS)

owner. This must match the

username found in the

installation image.

DAS_PASSWORD db2das01 Yes This is the password that will be

set for the DB2 Administration

Server (DAS) owner. Note: This

will automatically be masked

out of the xcluster.cfg file after

installation.

FENCED_USERNAME db2fenc1 Yes This is the username of the DB2

fenced user. This must match

the username found in the

installation image.

FENCED_PASSWORD db2admin01 Yes This is the password that will be

set for the DB2 fenced user.

 64

Note: This will automatically be

masked out of the xcluster.cfg

file after installation.

Section: [NETWORK]

The [NETWORK] section contains a list of all machines in the cluster. This is a very critical

part of the xcluster.cfg file. If a user attempts to deploy an image on a machine that is not

listed, or not correctly listed, in this section of the xcluster.cfg file (i.e., its eth0 MAC address

does not exactly match one found in the file), no configuration will occur. In most cases, this

means the user should correctly add this machine to the xcluster.cfg file and re-run the

installation.

Each line in the [NETWORK] section consists of six space-separated columns. The last

column, which represents a second network, is the only optional column in the line. Note

that the last column can optionally be separated by a comma. Below is an explanation of

valid values for each column in the line:

COL. CONTAINS VALID

VALUES

DESCRIPTION

1 DB2 Partition

Number

Integer Number DB2 Database Partition number for all nodes

except for the system node (i.e., nodes of type

 65

“SYS”). For SYS node, set this to be a negative

number.

2 Node Type SYS

ADM

DATA

LOAD

Indicates the node type of this machine in the

DB2 cluster and how it will be configured

during deployment.

Note that for the ADM nodes, the first node

of this type read in from the file will be

considered the FIRST ADMINISTRATION

NODE on the system and will be configured

as such (i.e., it contains the instance home

directory). The remaining ADM nodes will

only contain coordinator functionality.

3 Identifying

MAC address

A valid MAC

address (colon

delimited)

MAC Address of first Ethernet adapter (eth0)

on the machine. This uniquely identifies the

machine in the cluster.

4 Hostname A string -

optionally

containing the

value

“<NODE_PRE

FIX>”

The hostname that will be assigned to this

node. Note that if the value “<NODE_

PREFIX>” is included anywhere in this string,

it will be substituted with the value of the

NODE_PREFIX keyword found in the

[KEYWORKS] section.

 66

If two networks are provided for this node, the

second hostname will be generated by adding a

suffix to this hostname, depending on the

second adapter type :

• eth1 -> <HOSTNAME>_E1

• iboip -> <HOSTANAME>_IB

5 Network

Adapter 1

Configuration

adapter:IPADD

RESS/XX

Adapter can be

either:

• ethX

• ipoibX

where X is an

integer number

starting at 0.

The adapter for the first (required) network as

well as the IPADDRESS and NETMASK that

will be configured for this adapter. Note that

in most cases, this adapter name will correlate

with the adapter name specified in the

DB2_PRIMARY _NETWORK keyword in

the [KEYWORDS] section.

6 Network

Adapter 2

Configuration

(OPTIONAL)

adapter:IPADD

RESS/XX

Adapter can be

either:

• ipoibX

• ethX

The adapter for the second (optional) network

as well as the IPADDRESS and NETMASK

that will be configured for this adapter. Note

that in most cases this adapter name will

correlate with the adapter name specified in

the FCM_SECONDARY_NETWORK

 67

where X is an

integer number

starting at 0.

keyword in the [KEYWORDS] section.

Section: [NAGIOS]

The [NAGIOS] section contains a list of keywords and their associated values that are

required during Nagios configuration on the system node. If this section is not present,

specifically if the section header “[NAGIOS]” is not present in the file, Nagios will not be

configured.

The network information that is provided in the [NETWORK] section of this file contains a

majority of the information needed to configure Nagios on the cluster; however, there are a

few Nagios specific keywords that are required in this section. Currently the required

keywords include:

KEYWORK EXAMPLE

VALUE

DESCRIPTION

NAGIOS_ADMIN_USERN

AME

nagiosadmin The username of the primary Nagios

administrator.

Note that in addition to this

administrator, the DB2 instance owner

will also be added as a Nagios

 68

administrator.

NAGIOS_ADMIN_PASSW

ORD

nagios01adm The password that will be set for the

Nagios administrator. This will

automatically be masked out of the

xcluster.cfg file after installation.

NAGIOS_ADMIN_EMAIL tassi@server.

com

The contact e-mail address for all

Nagios administrators.

A.2 Network Configuration

One of the most important aspects of the xcluster.cfg file is the network information

provided. It is critical that this information be specified correctly; otherwise, network

connectivity, and everything in the cluster built on top of it (DB2, Nagios, etc.), will not

function. In particular, note the following points:

• Two adapter types are supported: ethX (Ethernet) and ipoibX (infinband).

• No more then two networks can be specified for each machine (in column 5 and 6).

• The first network is mandatory; having a second network is optional.

• One of these networks must be an Ethernet network (eth0).

• The keyword DB2_PRIMARY_NETWORK must be set to match one of these two

networks.

• The keyword FCM_SECONDARY_NETWORK is optional, and will only be used if it

matches one of the networks specified in the [NETWORK] section.

 69

Following these rules means that there are three possible ways to configure networking in

the xcluster.cfg file:

One Ethernet network

DB2_PRIMARY_NETWORK = eth0

0 ADM 00:0C:29:E8:D4:C9 HOSTNAME1 eth0:192.168.99.2/24

0 SYS 00:0C:29:E8:D4:CA HOSTNAME2 eth0:192.168.99.3/24

Two Ethernet networks

DB2_PRIMARY_NETWORK = eth0 or eth1

FCM_SECONDARY_NETWORK = eth1 or N/A

0 ADM 00:0C:29:E8:D4:C9 HOSTNAME1 eth0:192.168.99.2/24, eth1:192.168.98.2/24

0 SYS 00:0C:29:E8:D4:CA HOSTNAME2 eth0:192.168.99.3/24, eth1:192.168.98.3/24

One Ethernet network and one InfiniBand network

DB2_PRIMARY_NETWORK = eth0 or ipoib0

FCM_SECONDARY_NETWORK = ipoib0 or N/A

0 ADM 00:0C:29:E8:D4:C9 HOSTNAME1 eth0:192.168.99.2/24, ipoib0:192.168.98.2/24

0 SYS 00:0C:29:E8:D4:CA HOSTNAME2 eth0:192.168.99.3/24, ipoib0:192.168.98.3/24

Note that the order of Ethernet and InfiniBand network can also be switched.

 70

A.3 Configuration File Sample

DO NOT DELETE THE SECTION HEADERS!

VALID REQUIRED SECTIONS INCLUDE: [KEYWORDS] [NETWORK]
VALID NON-REQUIRED SECTIONS INCLUDE: [NAGIOS]

[KEYWORDS]

NODE_PREFIX = TEST
NETWORK_GATEWAY = 192.168.99.3
TIMEZONE = US/Eastern

DB2_PRIMARY_NETWORK = eth0
FCM_SECONDARY_NETWORK = eth1

ROOT_PASSWORD = password
DAS_USERNAME = dasusr1
DAS_PASSWORD = db2admin
INST_USERNAME = db2inst1
INST_PASSWORD = db2admin
FENCED_USERNAME = db2fenc1
FENCED_PASSWORD = db2admin

[NETWORK]

NODE NODETYPE MAC HOSTNAME IPADDRESS (up to 2)

-1 SYS 00:0C:29:E8:D4:CA XCLUSTER0 eth0:192.168.99.10/24 eth1:192.168.12.50/23
0 ADM 00:0C:29:E8:D4:C9 XCLUSTER1 eth0:192.168.99.11/24 eth1:192.168.12.51/23
1 DATA 00:0C:29:AB:52:2F XCLUSTER2 eth0:192.168.99.12/24 eth1:192.168.12.52/23
2 DATA 00:0C:29:AB:52:2B XCLUSTER3 eth0:192.168.99.13/24 eth1:192.168.12.53/23
3 LOAD 00:0C:29:AB:52:2C XCLUSTER3 eth0:192.168.99.14/24 eth1:192.168.12.54/23

[NAGIOS]

NAGIOS_ADMIN_USERNAME = nagiosadmin
NAGIOS_ADMIN_PASSWORD = password
NAGIOS_ADMIN_EMAIL = tassi@system.com

[END]

 71

Appendix B: Acronyms

• BMC – Baseboard Management Controller

• CSM – IBM Cluster Systems Management

• DAS – DB2 Administration Server

• DB2 ICE – DB2 Integrated Cluster Environment

• DB2 BCU – DB2 Balanced Configuration Unit

• DHCP - Dynamic Host Configuration Protocol

• DNS - Domain Name System

• DPF - Data Partitioning Feature

• DSH – Distributed Shell

• DSS - Decision Support System

• ETL – Extract Transform and Load

• FTP – File Transfer Protocol

• GB – Gigabyte

• HTTP - Hypertext Transfer Protocol

• HPC – High Performance Cluster

• IA64 – Intel Itanium architecture

• IB – Infinband

• IDE - Integrated Drive Electronics

• MPI – Message Passing Interface

• MPP – Massive Parallel Processing

• NFS – Network File System

 72

• NIC – Network Interface Card

• NPACI – National Partnership for Advanced Computing Infrastructure

• OSCAR - Open Source Cluster Application Resources

• RSH – Remote Shell

• SCSI - Small Computer System Interface

• SMS – Short Message Service

• Ssh – Secure Shell

• TCPIP – Transmission Control Protocol and Internet Protocol

• TFTP – Trivial File Transfer Protocol

• x86_64 – x86 compatible 64-bit Architecture (AMD64 & Intel 64)

 73

References

[1] J. D. Sloan, “High Performance Linux Clusters”, O’Reilly, 2005.

[2] “Computer Cluster”, Dec. 2006, http://en.wikipedia.org/wiki/Computer_cluster

[3] D. J. Becker, T. L. Sterling, D. F. Savarese, J. E. Dorband, U. A. Ranawak, and C. V.
Packer, “Beowulf: A Parallel Workstation for Scientific Computation”, Proceedings of
the International Conference on Parallel Processing, 1995.

[4] T. L. Sterling, J. Salmon, D. J. Becker, and D. F. Savarese, “How to Build a Beowulf:
A Guide to the Implementation and Application of PC Clusters”, MIT Press, 1999.

[5] G. Bell, and J. Gray, “What’s Next in High-Performance Computing?”,
Communications of the ACM, Vol. 45, No. 2, Feb. 2002, pg. 91-95.

[6] J. Layton, “The Coming of Diskless Clusters”, Oct. 2005,
 http://www.linux-mag.com/content/view/2269/

[7] H. Tang, A. Gulbeden, J. Zhou, W. Strathearn, T. Yang, and L. Chu, “A Self-
Organizing Storage Cluster for Parallel Data-Intensive Applications”, Proceedings of the
2004 ACM/IEEE Conference on Supercomputing, IEEE, Nov. 2004.

[8] V.Cardellini, E. Casalicchio, M. Colajanni, and P. S. Yu, “The State of the Art in
Locally Distributed Web-Server Systems”, ACM Computing Surveys, Vol. 34, No. 2,
June 2002, pg. 263-311.

[9] J. Chapin, A. Chiu, and R. Hu, “PC Cluster for Signal Processing: An Early
Prototype”, Proceedings of the IEEE International Conference on Sensor Array and
Multichannel Signal Processing Workshop, IEEE, Mar. 2000, pg. 525-529.

[10] R. Gollan, A. Denman, and M. Hankel, “Clustering is not Rocket Science”, Linux
Journal, Vol. 2006, No. 149, Sept. 2006.

[11] F. D. Sacerdoti, S. Chandra, and K. Bhatia, “Grid Systems Deployment &
Management using Rocks”, Proceedings of the IEEE International Conference on Cluster
Computing, IEEE, Sept. 2004, pg. 337-345.

[12] J. P. Navarro, R. Evard, D. Nurmi, and N. Desai, “Scalable Cluster Administration –
Chiba City I Approach and Lessons Learned”, Proceedings of the IEEE International
Conference on Cluster Computing, IEEE, Sept. 2002, pg. 215-221.

[13] J. Fernadez, E. Frachtenberg, F. Petrini, K. Davis, and J. C. Sancho, “Architectural
Support for System Software on Large-Scale Clusters”, Proceedings of the IEEE
International Conference on Parallel Processing, IEEE, 2004, pg. 519-528.

[14] C. Pettey, R. Butler, B. Rudnick, and T. Naughton, “Simple Maintenance of Beowulf
Clusters in an Academic Environment”, Journal of Computing Sciences in Colleges, Vol.
18, No. 2, Dec. 2002, pg. 208-214.

[15] G. Otero, “Building Linux Clusters”, Linux Journal, Nov 2000.

[16] S. Steiner, “Building and Exploring a Beowulf Clusters”, Journal of Computing
Sciences in Colleges, vol. 17, no. 2, Dec. 2001, pg. 78-87.

 74

http://en.wikipedia.org/wiki/Computer_cluster
http://www.linux-mag.com/content/view/2269/

[17] D. C. Bergen, and B. P. Miller, “Building an MPI Cluster”, Crossroads, ACM Press,
Vol. 8, No. 5, Aug. 2002.

[18] P. De Palma, A. Wiborg, and A. Withers, “Super Computing on a Budget”, Journal
of Computing Sciences in Colleges, Vol. 17, No. 2, Dec. 2001, pg. 71-77.

[19] S. Vaidya, and K. J. Christensen, “A Single System Image Server Cluster using
Duplicate MAC and IP Addresses”, Proceedings of the 26th Annual Conference on Local
Computer Networks, IEEE, Nov. 2001, pg. 206-214.

[20] Y. Georgiou, J. Leduc, B. Videau, J. Peyrard, and O. Richard, “A Tool for
Environment Deployment in Clusters and Light Grids”, Proceedings of the IEEE
International Conference on Parallel and Distributed Processing Symposium, IEEE, April
2006.

[21] OSCAR (Open Source Cluster Application Resources) Homepage,
 http://oscar.openclustergroup.org/

[22] M. Meredith, T. Carrigan, J. Brockman, T. Cloninger, J. Privoznik, and J. Williams,
“Exploring Beowulf Clusters”, Journal of Computing Sciences in Colleges, Vol. 18, No.
4, April 2003.

[23] R. Ferri, “The OSCAR Revolution”, Linux Journal, Vol. 2002, No. 98, June 2002.

[24] Rocks Homepage, http://www.rocksclusters.org/

[25] IBM Manual, “Balanced Configuration Unit for Linux: Guide and Reference”,
Version 1, 2005, pg 68.

[26] M. J. Katz, P. M. Papadopoulos, and G. Bruno, “Leveraging Standard Core
Technology to Programmatically Build Linux Cluster Appliances”, Proceedings of the
IEEE International Conference on Cluster Computing, IEEE, Sept. 2002, pg. 47-53.

[27] “Data Warehouse”, Dec. 2006, http://en.wikipedia.org/wiki/Data_warehouse

[28] D. Feinberg, and M. Beyer, “Magic Quadrant for Data Warehouse Data
Management Systems 2006”, Gartner Inc., Sept. 2006.

[29] DB2 Information Center (Online), V9.1,
 http://publib.boulder.ibm.com/infocenter/db2help/index.jsp

[30] C. K. Baru, G. Fecteau, A. Goyal, H. Hsiao, A. Jhingran, S. Padmanabhan, G. P.
Copeland, and W.G. Wilson, “DB2 Parallel Edition”, IBM Systems Journal , Vol. 34, No.
2, 1995, pg 292-322.

[31] IBM Manual, “Balanced Configuration Unit for Linux: Guide and Reference”,
Version 2.1, 2006, pg 15-19.

[32] Nagios Homepage, http://nagios.org/

 75

http://oscar.openclustergroup.org/
http://www.rocksclusters.org/
http://en.wikipedia.org/wiki/Data_warehouse
http://publib.boulder.ibm.com/infocenter/db2help/index.jsp
http://nagios.org/

Trademarks Attribution Statement

IBM and DB2 are registered trademarks of International Business Machines Corporation in
the United States, other countries, or both.

Intel is a trademark of Intel Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or
both.

Other company, product or service names may be trademarks or service marks of others.

 76

	Abstract
	Contents
	List of Figures
	List of Tables
	1.0 Introduction
	2.0 The Linux Cluster Landscape
	2.1 What is a Cluster?
	2.2 The Many Faces of the Linux Cluster
	2.3 A Survey of Current Linux Cluster Deployment Research
	2.3.1 Cluster Administration
	2.3.2 Cluster Deployment
	2.3.3 The OSCAR and Rocks Projects
	2.3.4 Other Cluster-Deployment Tools

	3.0 A Linux Cluster Data Warehouse Deployment Approach
	3.1 The Application: DB2 Data Warehouse
	3.2 Requirements and Design Decisions
	3.2.1 Cluster Topology and Node Types

	3.3 Hardware Details
	3.3.1 Additional Hardware Requirements

	3.4 Software Details

	4.0 The DB2ISERVER Installation Tool
	4.1 Creating the master image
	4.2 Cluster-deployment
	4.3 Details of the Installation Server
	4.4 Details of the Configuration File
	4.5 Details of the System Configuration

	5.0 Lessons Learned and Future Work
	5.1 Lessons learned from the field
	5.2 Future work

	6.0 Conclusion
	Appendix A: Configuration File Details
	A.1 Configuration File Specifications
	A.2 Network Configuration
	A.3 Configuration File Sample

	Appendix B: Acronyms
	References
	Trademarks Attribution Statement

