Collecting Task Data in Event-Monitoring

Systems

by
JIAJUN WU

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2004

©Jiajun Wu 2004

I hereby declare that I am the sole author of this thesis.
I authorize the University of Waterloo to lend this thesis to other institutions or individuals for the

purpose of scholarly research.

I further authorize the University of Waterloo to reproduce this thesis by photocopying or by other
means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly

research.

il

The University of Waterloo requires the signatures of all persons using or photocopying this thesis.
Please sign below, and give address and date.

il

Abstract

Event correlation is an important analysis technique in monitoring systems. Various correlation
methods have been widely applied in many systems. Recently, Sahai et al. proposed a correlation
scheme based on the “transaction” concept in Web Services. While it has limited application because
of its target dependence and scalability problems, the idea behind this solution is useful for
identifying behavior patterns in distributed and parallel systems. Existing monitoring systems have no
correlation method analogous to that of Sahai et al. We therefore wished to extract the general

transaction concept and develop a correlation solution independent of the target system.

This thesis explores the task-based correlation mechanism in monitoring systems. We define a
generic correlator independent of any target system. This correlator can be mapped to various
concrete instances in various target systems. We develop a correlation scheme based on this correlator
on top of the Partial-Order Event Tracer (POET). Our solution provides the general requirements for
instrumentation as well as an algorithm to collect task-based correlation data and presents a
visualization method for this correlation. We use the testbed tool and Java RMI to evaluate our
solution. According to our cost analysis, our solution is efficient and has good scalability. Due to the
abstract characteristic of our correlator, our solution is target-environment independent, eliminating

one of the major disadvantages suffered by the system of Sahai et al.

v

Acknowledgements

Thanks are given to persons who help me kindly on this thesis. First, I would like to thank Prof. Paul
Ward, my supervisor, for his supervision and guidance for the writing of this thesis. He provided lots
of valuable suggestions and comments. | would also be grateful of my readers, Prof. David Taylor
and Prof. Krzysztof Czarnecki, for their effort to read and comment on this thesis. My warm family
gives me courage and confidence to finish this thesis successfully. There are still a number of persons
who help me in my research work. Not mentioning their names does not mean that they are less
valuable. On the contrary, I provide my most sincere acknowledgement here to all of the people who

helped me.

Contents

Chapter 1 Introductionccceeereuees 1
L Y (05012 15 o) LSRR 2
1.2 Limitations of EXIStING SYSIEIMS......cccveccviiriieriieriiesiieiieeteereesteeteesseeseressseessesseesseessessssesssesssessnes 2
LI I 103 1135 L0100 4TSS 3
1.4 OFGANIZALION ...e.vveevvieiieciieeireereeteeteesteesereseseesbeeseesseesseessseasseasseasssesssasssesssessseasseesseesssessessssesssessnes 4

Chapter 2 Background and Related Work 5
2.1 IBM Log and Trace ANalyZer (LTA)ccuiiiiieeiieeieeeite ettt et svee e e sveeeae e e sev e earaeeenas 5

2.1.1 Event Data and CollECtioN.........ccueiiiiriiiiieiieeieee ettt s 5
2.1.2 Event Visualization and Correlation.............cceiiiiieiiiiiiiiieieeeeeeeee e 7
2.1.3 Limitations and ReSIICHONSc...iiitiiriiiiieiieiie ettt ettt ettt et e s e s 7
2.2 Message Tracking in Web SeIVICES......cc.ueviieiiteiiieitiertieiiesitesteeteete ettt et esaeeseeesneeenseenseenseens 10
2.2.1 Web Services and IMESSAZES.cccueeruierirrieeieeriiestientiesttestteeteeteesteesseesseesseesnsesnsesnseeseesseens 10
2.2.2 SOAP MesSagE TTACKINGceeviiiiiiieitieeieee ettt ettt ettt et e s eneeenseens 10
2.2.3 VISUAIZATIONeetietieieieiie ettt ettt ettt e st e st eeateeteete e s e e saeesnaesabeenseenseenseeseens 12
2.2.4 Drawbacks and LIMitationScecueruerierieriirieriesieeiesie ettt ettt sttt st sbe e 13
2.3 POET ..ttt ettt bt et h e e h et h et h e a et eb e et e b et e e ne 14
2.3.1 Event-based MOdEl........cc.coouiiuiiiiiiieiee ettt 14
2.3.2 Architecture OFf POETcoioiiiiiiieee ettt st e 16
2.3.3 EVENE COILECTION ..ottt ettt ettt st be e 17
2.3.4 Visualization and ANALYSISccueivieiirieiieeriesiesiesresreereeseesseesseesseesssessnesssesssesssesssesssenns 21
2.3.5 Correlation in POETccoiiiiieeee ettt et e 22

Chapter 3 Event Correlation by Task 25
O B B3 LA 0] 1<) 15 o) O TSR PRRR 25
3.2 TaSK COMCEPE ...veeiuiiieiiie ettt ettt et e et e et e st e e bt eestbeeesteeestbeessseeessseessseeanseeessaesssaeansseeassaesnseeenssens 26
3.3 NESIEA TaASKS. ¢ttt et b e b e bt sttt ettt et e s bt e bt e s et e et 29
3.4 Event Correlation DY TasK........ccuiiiiiiiiiiiie sttt et tae e veeetae e as 29

3.4.1 Basic Consideration for InStrumentation.............ceeveereenienieiie ettt 31
3.4.2 Propagation of Task Identifier...........ccoevviieiiiiiiiiiiceeeee ettt ve e 32
3.4.3 Collection of Task IAeNtifierccceeuiriieiiieieieeerte et 35
3.4.4 Task Identifier MapPingccceceerierierienieeie ettt et eitesee sttt eeeesbeeseeesaeesneesneeenee 37
3.4.5 Agreement on Task Data between Event Server and Target...........cccoevevvevieneniieecieennnnn, 38
3.5 Correlation VISUAIZALION.eevuieriieiieriieeie ettt ettt et e et sttt et e bt e sbeesaeesaeesneeenneenee 38

Chapter 4 Evaluation..................cuu..... 40
4.1 COSt ANALYSIS.ccuviieieiieiiiieiieeetee ettt e et eetteesvee e tteeeabeesbeeesbeeassaeessseesssasassseeassasansaeessaeesseesssanans 40
4.2 Evaluation of Task Data ColleCtioncccceeiiiiiiiiiiiiiii ettt 41

4.2.1 Testbed ENVIFONMENL........ccccviiiiieeiieeiieeeiie ettt eeteeeteeeseveeereeestaeesevesesseessseeenseeesesessseeenees 41
4.3 Java RMI ENVIFONIMENL........cciitiiiiiieiitieeitieecteeeeieeeteeeetteeeveeeteeesabeeevesesaseesssesesseesssesensseessseeans 47
4.3.1 INSTUMENEATIONeiiitiieiiiieetieeeteeetee ettt e eteeeeteeesbeeeaeeeseseeentseesseesssesesseessseeanseeessseesasesannns 48
4.3.2 VISUALIZALIONeoitiiiiiieciie ettt ettt et et eae e e sebeeetaeestbeeeates e sbeesasaeensaeessseesasesennns 54
4.3.3 RESUILS ..ottt ettt ettt b et bt st b e e bt et b e st te e bt et e bt eate b 54
4.4 CompariSOn With LT Acoooiiiiiiiieiiete e ste et ettt et sstesere e e esteesseestaesssessseesseessaessnensses 55
4.5 Comparison with the Approach of Sahai ef @l.............cceeveviiiiiiiiiieeeere e 56
4.6 Comparison With POET ADSIACHIONcccuiriiierieeriienienieeieereereeaeseeeseeessseesseesseesseesseesssesnses 56

Chapter 5 Conclusions and Future WorkKeiceicneicnseicssnnissssissssnesssssssssssssasssssssesens 58
ST FULUIE WOTK Lottt st ettt et sb e bt sbee s st 58

Appendix A A SOAP Message Containing MDR 60

Appendix B A UEF-Formatted File 61

Appendix C Sample Testbed Scripts 63

Appendix D Java RMI Sample Codes .67

LS) Q) 1 L RN 70

vil

List of Figures

Figure 2.1: Layout Of LTA ..ottt ettt ettt et et essaesnseensaessaessaesseesnnesnsennns 6
Figure 2.2: A Fragment of an Access Log Generated by an HTTP Server........ccocevvvevveivenveeneennenn, 8
Figure 2.3: A Fragment of an Error Log File Generated by the Same Server.........c.cccceeevevvenieeneennenne. 8
FIUIE 2.4: L0 VIEW ..viivviiiiiiii sttt tte st v e e bt e bt e staestaessbeesbeesbeesttesssessseasseessaessaesssesssesssenssennns 9
Figure 2.5: Correlation DY TIME......c.cccvieiieriieiieirieiiereesrtestee e sae e ebeebe e eeessaesebessseessaessaesseesssesssesnns 9
Figure 2.6: SOAP Messages Exchanged between Web Services [SMO 02]c.cccoevevevvveveveeeennnes 12
Figure 2.7: An MDR Tree Representing a Web Services Transaction [SMO02].........c.cccoovvveuennnnne. 12
Figure 2.8: A Complete Visualization View from the Initiator [SMO02].........cccoovemievreereeeennans 13
Figure 2.9: An Incomplete Visualization View from officesupplies.com [SMO02]cococevevnnee. 14
Figure 2.10: The Architecture Of POETcoooiiiiiiiiiecee ettt ettt et saae e e 17
Figure 2.11: Event Streams in POETcooiiiiiiiiieeetetee sttt sttt e 18
Figure 2.12: Synchronous and Asynchronous CommuniCationccceceereereerienieesieesieenieeneeniens 22
Figure 2.13: A NOn-ConveX EVENt Set........cceeiiiiiiiiiiiiieiieieetesite sttt ettt st 24
Figure 3.1: A Task in Web BrOWSING........cooiiiiiiiieiieieeeiete ettt 27
Figure 3.2: A Business Transaction in Web SEIVICESc.cccvvevireiieriierieriiesiesieseesreeseeseesseesseessnens 27
Figure 3.3: A Chain of RPC/RMLIL.......c.ccoiiiiiiiiieiieeiieiteiteteee sttt eieebeestaessaesssesnseenseenseessaens 28
Figure 3.4: A Nested Session in Web BrOWSINGccvecvirierierieiiiiie e e eieesiee e e sneeseesseeneeens 30
Figure 3.5: A Nested Transaction in @ Databasecccecveruierierieiiriieeieeseeseesee e sneeeeeseeseeseeens 31
Figure 3.6: Tree Structure Representing Nested Tasksccvvcvveriieriienieniieiienie e see e 32
Figure 3.7: Task Identifier Propagation amongst JVIM ProCeSSes........ccveveereervenieereesieesreesseeseeenenens 33
Figure 3.8: Task Flow across Multi-tier Web SYSteM..........cccivvviiviiiiiieniieiieeie e ereeeesieesreseveeve s 33
Figure 3.9: The Structure of @ Task CONEXL......cccveeviiviieriiiriierierie e ere e e ereesteeseesresesesseesseeseens 34
Figure 3.10: Popup Window for Selected EVENt.........cccoooviiiiiiiiiiiiiciececeeeesee e 39
Figure 4.1: Testbed Environment 0f POETccciiiiiiiiiiiicie ettt e 41
Figure 4.2: Binary Events with Task Datac.ccceeiiiiiiiiiiiiic et 42
Figure 4.3: Unary Events with Task Datac.cccccuieiiiiiiiiieiiic ettt veeetee e svee e e 42
Figure 4.4: Visualization Of SCTIPE 1cccuviiiiiiiiiiciie sttt ettt et e etae e beeesbeeesebeesssaeens 43
Figure 4.5: Display of an Event of the First Taskccccccieiiiiiiiiiiiiicie e 43
Figure 4.6: Display of an Event of the Second Task...........ccccoviiiiiniiiiiiiiiiieeeeeee e 44
Figure 4.7: Visualization Of SCTIPE 2eoiuiiiiiiiiiiiieit ettt ettt st et se et enaee 44
Figure 4.8: Display of an Event of the First Taskcccccoiiiiiiiiiiiiiiceeeeeeceecee e 45

viii

Figure 4.9: Display of an Event of the Second Task..........ccccccuieeeiiiiniiiiiiiee e 45

Figure 4.10: Visualization Of SCIIPE 3ueiiiiiiiii ettt e esve e e ta e e beeetaeessbeeens 46
Figure 4.11: Display of an Event of the First Taskcccceiviiieciiiiiiiiicceccee e 46
Figure 4.12: Display of an Event of the Second Taskccoccieriiiiiiiienienieiececcee e 47
Figure 4.13: Java RIMI......oooiiiiiiiii ettt ettt sttt et b e sbe e st e sateenseeseenseens 48
Figure 4.14: A Composite RIMI.........oooiiiiiiiiiiieiieeie ettt ettt ettt e et e saeesateenseens 48
Figure 4.15: The Infrastructure of Composite RMI INVOCationccceeveevirrieniieiiieieeieeeeneenieane 49
Figure 4.16: Thread Structure in Java RMI..........ccoeoiiiiiiiiiiierieceeeeeeeee e 50
Figure 4.17: Propagation of Task [dentifiercccccvevierierieniiiiesieee et 54
Figure 4.18: The Visualization Result for the Sample Source Code..........ccoovvvrcverciieciiecieciieierieneene 55
Figure 4.19: Display of @ Positioned EVEnt..........ccccveciiriiiriinienieiie ettt eee 55

X

Table 3.1: Coloring Matrix

List of Tables

Chapter 1

Introduction

A distributed system is composed of a number of loosely-coupled machines connected by some form
of communication medium. In a distributed system the machines do not share system resources
(memory, system clock, efc.). The entities in the distributed system interact by message passing. In
such systems, the behavior of entities and interaction between them is not easily understood by the
developer. The developer needs mechanisms to identify the behavior of the system, to enable

determination of faults, and to optimize performance.

A monitoring tool is useful for a developer to track and analyze the behavior of distributed systems. It
collects event data and provides functionality to analyze that data, such as visualization of events and
their relationships. While such a monitoring tool is useful, the large amount of event data in

distributed systems makes such analysis difficult.

Correlation is a widely used technique for event-data analysis. Event correlation is the process of
determining relationships between events in order to identify patterns of events. In other words, event
correlation is the process of finding related events according to some correlation criterion. It may help
a developer identify behavior patterns and thus reduce the complexity of analysis. Existing tools
provide various correlation mechanisms, such as “trace” in the Partial-Order Event Tracer (POET)
[KBT'97], and “transaction” in the message-tracking system of Sahai et al. (which we will henceforth
refer to as Sahai’s system) [SMO" 02]. However, these systems do not solve the problem completely
since they have various limitations. For example, POET cannot capture such a relationship as
“transaction.” Conversely, Sahai’s system can capture the transaction relationship, but only in Web

Services, and does so inefficiently.

This thesis explores new ways to capture the transaction relationship efficiently and to remove the
target-system dependency. Due to the target-system independence of POET, we adopt it as our base

system to implement the new solution.

1.1 Motivation

For distributed and parallel systems, isolated event data captured by monitoring tools, without well-
defined correlation, is of little value. Existing correlation solutions help the user identify patterns of
behavior and reduce the complexity presented to the user to some degree. However, the size and
complexity of existing systems is such that existing correlation solutions are insufficient. More-
sophisticated correlation solutions are needed for monitoring and analyzing such systems, and more-

efficient algorithms are needed for existing solutions.

Sahai et al. proposed a correlation scheme for message tracking in Web Services [SMO'02]. They
provided a correlation solution based on the “transaction” concept. Compared with correlation
mechanisms in other monitoring systems, their introduction of “transaction” solves some problems.
However, it has two limitations. First, their definition and implementation are closely tied to Web
Services. Second, their algorithm does not scale. We believe that “transaction” is a useful concept that
can be applied in many systems beside Web Services. It can be mapped to different correlation factors
in different systems. It can be used to correlate events across multiple target systems. The extension

and redefinition of “transaction” will remove the target dependence in the solution of Sahai et al.

1.2 Limitations of Existing Systems

We studied correlation features in several systems, including POET, Log and Trace Analyzer (LTA),
and Sahai’s system. POET has some correlation features, such as traces, send-receive pairing, and
automated abstraction. LTA [LTA Website] provides some correlation options, including URL,
application ID, and time. It can correlate events based on individual or combined options of these
criteria and on any user-defined criteria. The solution of Sahai ef al. correlates SOAP messages by a

tree structure in SOAP messages [SMO'02].

However, these solutions have various limitations. LTA has limited correlation options, some of
which are non-deterministic. It does not define any generic correlator though one can be plugged in.
In particular, it does not have a “transaction” correlator. Furthermore, it does not present partial-order

information.

The scheme of Sahai et al. is not an efficient and scalable approach in terms of correlation data
collection. It does not scale well with respect to the number of messages per transaction. Its

application is also limited to the XML Web Services environment.

POET is a sophisticated monitoring system. It is independent of the target environment. However, it
lacks a correlation mechanism that can provide a snapshot of a “transaction” in distributed systems,

which Sahai et al. provided.

In summary, no existing monitoring system provides a complete and efficient solution for the
transaction correlation proposed by Sahai et al. To build a monitoring tool with such a correlation

mechanism, we must solve three major problems. They are

(1) Define a correlator which is target-system independent.
(2) Design an efficient and scalable collection mechanism for correlator information.

(3) Design a visualization mechanism for such correlation.

This thesis addresses these three problems, and provides a solution based on the existing POET

system.

1.3 Contributions

This thesis has four contributions:
(1) We define a generic correlator, “task.” The domain of our correlator is an abstract one which can
be mapped to various concrete domains for concrete systems. Thus the correlator we define is target-

system independent.

(2) A method of correlator collection is proposed to solve the problem of collecting correlation data
for large and complex target systems (e.g., multi-target systems). This approach includes an algorithm
for instrumenting the target system and for defining the mapping between external and internal task
identifiers in the event server of POET. Our approach is efficient, scalable, and flexible in terms of
correlator collection, which solves the problem of the solution of Sahai ef al. Our approach does not

have significant additional cost.

(3) We implemented our solution within POET. Our tool has the functionality of collecting
correlation data and performing correlation visualization. Our solution has good interoperability and
backward compatibility. Any target system that works with the original POET needs no changes if
correlation data is not collected and only minor changes if it is collected. The additional cost is not
significant because we collect the correlator information with a small constant consumption of space
and bandwidth. Our solution provides a visualization scheme for correlation at the event level.
Because we adopt POET as our base visualization tool, our visualization is able to display the whole

partial-order of events as well as correlation information.

(4) According to the generic algorithm in (2), we instrumented Java RMI and evaluated the results.

1.4 Organization

The remainder of this thesis is composed of four parts. Chapter 2 presents our research background
and related work. In this chapter, we review three systems: LTA, Sahai’s system, and POET. In
particular, we discuss the correlation functionality of each of them. Chapter 3 presents the definition
of our correlator and our correlation solution within POET. In this chapter, we provide general
requirements and an algorithm for instrumentation as well as a method of correlation visualization in
POET. In Chapter 4, we evaluate our solution. We first analyze the costs of our solution. Then, two
target environments, the testbed tool and Java RMI, are used to evaluate our solution in a practical
sense. Finally, we compare our solution with existing correlation techniques discussed in Chapter 2.

In Chapter 5, we draw conclusions from our work and outline possible extensions.

Chapter 2
Background and Related Work

In this chapter, we give a brief introduction and review of three monitoring systems: IBM’s LTA,
Sahai’s system, and POET. In Section 2.1, we describe the log file and Common Base Event (CBE)
used in LTA. We focus on the visualization and correlation. In Section 2.2, we review the
mechanisms of correlator collection and visualization of Sahai’s system. In Section 2.3, the
architecture of POET, its mechanism for event collection, and features of its display are described,

since it forms the basis of our solution.

2.1 IBM Log and Trace Analyzer (LTA)

LTA is part of the Hyades project. It is an Eclipse-based monitoring system that monitors Java
programs as well as analyzing log files generated by various systems including IBM WebSphere
Application Server, IBM HTTP Server, IBM DB2 Universal Database, and Apache HTTP Server
[LogTrace Website].

LTA has two sub-systems: a logging tool and a profiling tool [LTA Documents]. The profiling tool is
the part that interacts with the instrumentation inside the target. The instrumentation in the target side
is called the profiling agent. This agent can collect run-time data from the target process and send
them to LTA for visualization and analysis. The logging tool is used to analyze various log files

generated by the targets. In this way, both log data and profile data can be visualized in LTA.

2.1.1 Event Data and Collection

Two types of event format are employed in LTA. One is the format of the original log record, the

other is CBE used inside LTA.

The original event data are stored in log files, and their formats and content vary from target to target.
Their generation depends on the target itself. For example, log records generated by an HTTP server

are different from those generated by the DB2 Database.

£ Profiling and Logging - build. properties - Log and Trace Analyzer
File Edit Mavigate Search Project Profile Run Window Help

o -2 Y0 % &X- | ¢ G-
ﬁ Profiling Manitar w» X || B Profiing Console g x
@ Creates & project with an Apache a
=
L3
£ | » | | Profiling Conscle |Log Wew |Package Statistics | Sequence Diagram

Eﬁ.}l build,properties X

Properties

Build script variables Replacement ¥alues

Wariables | Source

Figure 2.1: Layout of LTA

To solve the problem of the diversity of log file formats, the logging tool uses CBE to provide a
consistent view for various types of event records. CBE uses an XML-based format to describe
events. It defines the structure of an event in a consistent, common format [CBE Website]. Each CBE
record represents an event occurring in a target. It includes the event identification, the identification
of the reporting entity, the identification of the affected entity, associated message content, and
related data. CBE improves the flexibility and interoperability of event data. However, its drawback is

the problem of efficiency, since each CBE-format event is typically 1KB.

To convert various log formats to the CBE format, LTA needs a parser for each type of log. Such a
parser is implemented as a plug-in for LTA. This structure gives LTA some degree of flexibility to
deal with different event data generated by various targets. However, this parsing is another cost of

using CBE.

The logging tool obtains event data from log files generated by targets. Only when LTA executes the
import action is the log file containing event data read and converted to CBE format. The profiling

tool obtains event data from instrumented targets.
6

2.1.2 Event Visualization and Correlation

LTA presents several views for users. The log view gives a tabular format. The user can view the
information of any CBE event. The sequence-diagram view provides a graphic visualization for the

events in the log file(s).

The correlation plug-ins correlate events based on the rules specified by the plug-in. The rule is the

policy to order or group events according to the values of some property or properties of those events.

Existing correlations in LTA include correlation by time, correlation by URLs, and correlation by
application IDs. They can be categorized into two types, sequence correlation and associative
correlation [LTA Documents]. An example of sequence correlation is to order a set of events by time
stamp. Correlating the events with same thread ID is an example of associative correlation. We will

discuss these two correlations in Chapter 3.

Fragments from two log files are used to show the relationships between them. The records selected
contain multiple errors so as to demonstrate the correlation found by LTA between access and error
logs. The fragments are listed in Figure 2.2 and Figure 2.3. The log view and the result of correlation

by time are shown in Figures 2.4 and 2.5, respectively.

2.1.3 Limitations and Restrictions

LTA has two limitations. First, large CBE records increase the probe effect for the profiling tool. This
is the effect the collection of information imposes on the information being collected. Second, LTA

cannot collect partial-order information at present.

9.131.0.90 - - [15/Jan/2003:10:41:00 -0500]
/scripts/root.exe?/c+dir HTTP/1.0"™ 404 289

9.131.0.90 - - [15/Jan/2003:10:41:01 -0500]
/MSADC/root.exe?/c+dir HTTP/1.0" 404 287

9.131.0.90 - - [15/Jan/2003:10:41:02 -0500]
/c/winnt/system32/cmd.exe?/c+dir HTTP/1.0" 404 297
9.131.0.90 - - [15/Jan/2003:10:41:02 -0500]
/d/winnt/system32/cmd.exe?/c+dir HTTP/1.0"™ 404 297
9.131.0.90 - - [15/Jan/2003:10:41:03 -0500]

"GET

"GET

"GET

"GET

"GET

/scripts/..%255c../winnt/system32/cmd.exe?/c+dir HTTP/1.0"™ 404 311

9.131.0.90 - - [15/Jan/2003:10:41:

03 -0500]

"GET

/ vti bin/..%255c../..%255¢c../..%255¢c../winnt/system32/cmd.exe?/c+dir

HTTP/1.0" 404 328

Figure 2.2: A Fragment of an Access Log Generated by an HTTP Server

[Wed Jan 15 10:41:00 2003] [error] [client 9.131.0.90]

exist: c:/apache group/apache/htdocs/scripts/root.exe

File does

[Wed Jan

exist: c:

[Wed Jan

exist: c:

[Wed Jan

exist: c:

15 10:41:01 2003] [error] [client 9.131.0.90] File does
/apache group/apache/htdocs/msadc/root.exe

15 10:41:02 2003] [error] [client 9.131.0.90] File does
/apache group/apache/htdocs/c/winnt/system32/cmd.exe

15 10:41:02 2003] [error] [client 9.131.0.90] File does
/apache group/apache/htdocs/d/winnt/system32/cmd.exe

not

not

not

not

Figure 2.3: A Fragment of an Error Log File Generated by the Same Server

Profiling and Logging - Log and Trace Analyzer

File Edit Mavigate Search Project Profile Run Window Help

e - S-S D%R[R-[| v[[% & - -

= [profi, ritor » x e
B [00 | [B ||Log Records (Fiker matched 132 of 132 recards) Propert: | value
RIE By Creates a proje | =™ File does not exist: c:fapache groupfapsche/htdocs/msade/rook.exe | @ locallnstanceld
=, CRANE =2 § ~ @ globallnstanceld NECEB4A1030111D88000BAB7 962676
= B cEm @ creationTime 2003-01-15 10:41:02,000000-05:00
b FE W =5 CBEAssocistedEvent[0] @ severity 10
. =-Hp ciiem =5 resolvedEvents @ priority]
E <td Gy "GET [diwinntisystem32/crnd.exe? fc+dir HTTP/1.0" 404 297 @ situationType
~5 File does not exist: c:japache groupapachefhtdocs/cfwinnt/system32fcmd. exs @ msg "GET Jejpwinnt/system32/crmd exefc+
= File does nok exisk: ci/apache groupjapache/htdocs/dhwinntsystemI2/cmd. exe @ repeatCount o
5> associationEngine & elapsedTime o
[]---i extendedepErtlEZ & sequenceMumber 0
& sourceCompanentl @ version commonbaseeventl_0
[+ 5~ msgDataElement
| @ analyzed false
™ File does not exist: c:fapache groupfapache/htdocs/cjwinnt/systemaziomd exe =
- @ extensionMame CBECommarBassEvent
-5 associatedEvents
= 5 CBEAssociatedEvent[0]
=& resolvedEvents < | >

= File does not exist: cilapache groupiapache/htdocs/diwinntisystem3z/omd exe
5> associationEngine
5 extendedProperties
& sourceComponentId
= msgDataElement
“GET fdfwinntisystem3ziomd, exe?fo+dir HTTR{1,0" 404 297
= associatedEvents
(=15 CBEAssocistedEvent[0]
= 57 resolvedEvents
o “GET [efwinnkfsystem32/cmd. exe?/cdir HTTP{1.0" 404 297
- File does not exist: c:fapache group/apachefhtdocs cfwinntfsystemazjcmd. exe
= File does nok exist: ¢:/apache groupjapache/htdocs/diwinntjsystem3z/cmd . exe
5> associationEngine
5 extendedPropertiss
= sourceComponentId
5 msgDataElement

Details locallnstanceld Analysis Result

-
(-3

g =]

-
-

-
[

<
&) 5 || Log wiew [Sequence Diagram

Figure 2.4: Log View

ogging - Log and Trace Analyzer

Mavigate Search Project Profile Run Window Help
ella-? | HeBA[F-[| F[=e-o -
58 Prafiing Manitar ek |4 - x

(=g Creates a project with an Apache accsss log and srror log file,_TCManitor
=B CRANE
=1 Ha CAIBM_Tracer|edipsetworkspace\LoganalyzerProjectiaccess.log ¥1.3.20 [PID:0]
f =terminated > Access Log File
- CAIBM_Tracerieclipssiworkspace\LoganalyzerPrajectisrror.log ¥1.3.20 [PID:0]
<tsrminated > Error Log File

@@ ¢ X yolF B

ji

overview |

Log Wiew | Sequence Diagram |

Figure 2.5: Correlation by Time
9

2.2 Message Tracking in Web Services

Sahai et al. propose a decentralized solution for message tracking in Web Services [SMO'02]. In their
solution, a correlation method based on transactions is introduced. Although their correlation

algorithm is specific to Web Services, the idea can be extended to a broader scope of targets.

2.2.1 Web Services and Messages

In the broad sense of the term, Web Services is a formatted message-based model for applications and
web sites to be interoperable with each other. In more technical terms, it is Remote Procedure Call
(RPC) where all involved parties agree on the exchange of standard-format messages, specifically
using XML-based syntax. Web Services are enabled by a set of standards and technologies. They are:
Simple Object Access Protocol (SOAP) [SOAP Website], Universal Description, Discovery, and
Integration (UDDI) [UDDI Website], and Web Services Description Language (WSDL) [WSDL
Website].

In Web Services, a complete computing service is often a composite one which comprises a set of
remote invocations via SOAP across heterogeneous platforms. It is helpful for the developer to track

the invocation path for a specific service.

2.2.2 SOAP Message Tracking

Sahai et al. use the idea of a transaction to represent a composite web service. Their concept of
transaction is different from the one in database systems. Rather it is a portion of business logic with a
clearly defined begin-point and end-point [SMO'02]. Their solution is to track the messages
belonging to the same transaction. In contrast to LTA, event collection in this solution depends on the

use of SOAP messages.

2.2.2.1 Message Data

In this solution, correlation data are collected during the interoperation of entities in various web
services. Such interoperation is accomplished by extra data flowing through the entities. The extra
data are in the form of a data structure called a Message Detail Record (MDR), which is shown
below. The parent-MDR field represents the transaction relationship. Appendix A gives an example

of a SOAP header containing an MDR [SMO'02].

10

MDR

{
parent_mdr : message detail record of the parent message
message_id : unique identifier of the message
message_type type of the message
source : identifier of the service originating the message
target : identifier of the service receiving the message
time_sent : time when the message was sent by source
time_recd : time when message was received by target

/

2.2.2.2 Message Tracking and Correlator Collection

In this solution, message tracking and correlation collection are fulfilled by building MDR trees in the
header of the SOAP message. When a message is being sent, a new MDR is created and inserted into
the appropriate child position of its context MDR. When a message is received, the MDR tree
contained in the SOAP header is extracted and merged with the MDR-Forest stored by the receiver.

A tree structure of MDRs (for the exchanged SOAP messages shown in Figure 2.6) is shown in
Figure 2.7. Each tree represents a web-services transaction. Each node in the tree represents a
message in the tracking path. A child node means the message occurs in the context of its parent

message. As we can see, message correlation is represented by the tree structure of the MDRs.

It is readily seen that the size of the tree grows with the length of the path of a transaction.
Accordingly, the size of the header of a SOAP message is a variable determined by the length of a

transaction. That is, the message-space complexity of this solution is O(N), where N is the path length

of the transaction.

11

2: Part of Purchase
Order

1: Purchase Order

—>
4—

10: Purchase Order

stationery.com

wipping Request

\
/

i

9: Order Confirmation

7:Shipping
Confirmation
6: Shipping

8: Order Confirmation .
Confirmation

Confirmation

NN

3: The Other Part o

supplies. supplies. shipme.com

workhard.com marketplace.com

Purchase Order

/S:S;pping Request

officesupplies.com

Figure 2.6: SOAP Messages Exchanged between Web Services [SMO'02]

MDR 1
MDR 2 MDR 3 MDR 10
/
MDR 4 MDR 5
MDR 7 MDR 9 MDR 8 MDR 6

Figure 2.7: An MDR Tree Representing a Web Services Transaction [SMO'02]

2.2.3 Visualization

Each entity in the target system has its own view of the message tracking. For a specific transaction,
only the initiator has a complete view of messages and their relationships. The initiator can display all

of the messages and involved entities for the transaction. Figure 2.8 shows a complete visualization

12

view of the initiator of a transaction. Figure 2.9 shows an incomplete visualization view from the

intermediate node officesupplies.com in the transaction.

2.2.4 Drawbacks and Limitations

This approach provides a deterministic correlation solution based on the “transaction” concept, but it

has some limitations.

(1) It does not scale well with the growth of the number of messages per transaction. As we have
discussed in the previous section, the size of the SOAP message containing the MDR tree increases

through the transaction path. Its complexity is variable depending on the path of a transaction.

(2) The message tracking and collection is tightly bound to XML-formatted data. This reduces its
flexibility, interoperability, and portability. It does not have good target independence.

stationery.com

BuyStationery Avg: 597.66 count: 6 Ship Avg: 586.167 count: 6

ip Avg: 786.167 count: 6
PlaceOrder Avg:457.3 count: 6

ConfirmBuyStationery Avg:1,018.67 count 6

shipme.com

workhard.com supplies. irmBuySupplies Avg:552.5 count: 6
marketplace.com

Vg: 786.167 count:

>

officesupplies.com

BuySupplies Avg: 674.33 count: 6 Ship Avg: 586.167 count: 6

Figure 2.8: A Complete Visualization View from the Initiator [SMO"02]

13

PlaceOrder Avg:432.33 count: 6

ConfirmShip Avg: 330.5 count: 6

shipme.com

workhard.com supy lies.
marketplace.com

BuySupplies Avg: 452.33 count: 6 officesupplies.com Ship Avg: 250.167 count: 6

Figure 2.9: An Incomplete Visualization View from officesupplies.com [SMO02]

2.3 POET

POET is a distributed debugging and monitoring system developed by the Shoshin lab at the
University of Waterloo. POET can visualize the process-time diagram of various parallel and
distributed systems, showing the partial order of events. POET is a useful tool for studying the
behavior pattern of entities and the interaction patterns between entities (processes, etc.). It is helpful
for identifying faults, anomalies, and performance problems. One of its advantages is that it is
independent of any target system, and thus has been used for a variety of environments that include
OSF/DCE [OSF93], Hermes [SBL"91], Concert/C [YGS'89], ABC++ [AOK95], uC++ [BuS91], SR
[And"88], PVM [GBD'94], TCP Sockets, Java, and itself (since it is implemented as a distributed

system).

2.3.1 Event-based Model

The target-system independence of POET is enabled by the concepts of “event” and “trace”. POET
adopts the event-based approach. This approach is one of the techniques employed in formal
modeling of distributed computation [War(02], and was originally developed by Lamport [Lam78]. It

focuses on the events which trigger state transitions rather than focusing on the state [War(02].

14

2.3.1.1 Event

An event is a transition from one state to another. Events are “atomic,” which means they take zero
time to occur. The concept of event is independent of any concrete system. Events can be instantiated

in a variety of concrete systems.

In monitoring systems adopting the event-based approach, the event types differ from target to target,
and depend on what information the user wants to capture. For example, an RPC call can mean two
events for two processes, one a send event, and the counterpart a receive event. However, an RPC
may have several pairs of events between two processes if we want to capture message interactions at

the TCP level.

From the point of view of the end user, the event is the unit that should visualized. However, the
display of a collection of isolated events is far from enough for the user. The pattern of relationships
between events is critical. The first obvious pattern is the order relationships. In distributed systems,
the partial order is the ordering relationship of events. Lamport’s happened before [Lam78]
determines the partial-order relationship in distributed systems. It is denoted by “—”. The rules of

happened before are

e Ifaand b stand for two events in the same process, and a occurs before b, then a— b.

e If a is the sending point of a message and b is the receiving point of the same message by
another process, then a — b.

e Ifa—>bandb— c,thena — c.

e Events a and b are concurrent if and only if neither “a — b” nor “b — a” is true.

2.3.1.2 Event Collection

In a monitoring system, a critical requirement is to collect the event data generated by the target.
Event data is collected by inserting small pieces of code that report to the monitoring system the
necessary event information. Such instrumentation code is inserted into the operating system, run-
time environment, communication library, or application code itself, as appropriate [See95]. Such

instrumentation varies from system to system. The concrete instances of events are target dependent.

15

The event may be low level, such as local system call. It may be a higher-level one, such as an HTTP

request or a SOAP action.

A problem of instrumentation is the probe effect. Instrumentation may perturb the ordering of events
in a program execution so that the collection of information can actually affect the information being

collected [See95]. POET minimizes this effect by collecting a minimal amount of information.

2.3.2 Architecture of POET

POET has a client/server architecture. The run-time architecture of POET is shown in Figure 2.10.
For a simple configuration, POET consists of an event-server process and two client processes: the

debug-session process and the checkpoint process.

The event server (also called disk server) interacts with both the monitored targets and various clients.
It is responsible for receiving, processing, and storing event data from the target application, and for

sending event data, on request, to its clients.

The debug-session process is the visualization part of POET. It is responsible for direct interaction
with the end user [KBT'97]. It can reside remotely as well as on the same machine as the event
server, which depends on the configuration of POET. Its major functionality is to obtain end-user
input via the keyboard and mouse and produce an appropriate display in response. This process
contains the algorithms for the debugger display, such as display scrolling, clustering, and event

abstraction.
The checkpoint process is an optimization to improve system performance.
The target programs are the monitored processes that have instrumentation to interact with the event

server. The instrumentation is responsible for generating event data and sending them to the event

SCrver.

16

Debug

Target Session

Program

Target

Program Event Server Check-point
Record

Target

Program

Checkpoint

Process

Figure 2.10: The Architecture of POET

2.3.3 Event Collection

The instrumentation inside targets sends raw event data to the POET event server over TCP/IP

streams using the POET Event-Stream Protocol, as shown in Figure 2.11.

There are two types of events, normal events and text events, which are sent over this stream. A
normal event contains information about the event, as well as information about its partner event, if it
has one and if that information is known. The information in the event includes event type, local-trace
identification, event count (i.e., the event’s position, starting from 0, on a trace), and real-time data.
The information of the partner event includes stream identification, trace identification, and event
count. A text event includes the text information of the immediately preceding normal event in the

same stream.

17

Event-Stream Protocol POET Client-Server Protocol

. A
e
. A

) SEEEEE—) N
Target raw event data
>
Program TCP Stream requests event data
~— <+— —>
—\ | raw event data
¢
Target q TCP Stream :I_Ijl |
Debug-session Client
Program TCP Stream
Event Server p
requests event data
raw event data < > I:I
< — S
T TCP Stream))
arget > Debug-session Client
TCP Stream . J

Program

Figure 2.11: Event Streams in POET

Send-receive pairing and synchronous-event pairing are important relationships in POET. For
instrumentation, the send-receive relationship of events is captured in the following way: At the time
a send event occurs, the outgoing message will have data appended to it such as the stream identifier,
trace identifier, and event count. When the corresponding receive event occurs, target-system
instrumentation obtains these data from the incoming message. For synchronous events, the same

operations are performed as described above.

2.3.3.1 UEF-Formatted File

The event server may persistently store the event data in a UEF-formatted file. A UEF-formatted file
is a sequential ASCII file that is independent of different versions of POET and is platform-
independent [Tay03]. A UEF-formatted file is composed of four major sections: general header,
stream data, trace data, and event data. The user can reload event data stored in the UEF-formatted
file. In such a case, the reload program retrieves the event data stored in the UEF-formatted file,
parses the event data, and sends them to the event server through the Event-Stream Protocol. To send

the event data, the reload program sets up streams to the event server as used by the original

18

execution. Thus from the view of the event server, the reload program operation is indistinguishable

from the original execution.

2.3.3.2 Target-System Independence

POET provides target-system independence by means of a target-description file and an initial

pseudo-event.

The target-description file contains relevant characteristics of a specific target environment. It is
composed of a set of keywords and their values for the target and an event-description table that
describes the events in detail for a target environment. The keywords include the target identifier,
event-window title, and program-window title. The event-description table contains a sequence of
entries each of which provides the relevant information for an event type of a specific target. The
information for an event type includes index, partner-event type, and visualization characteristics
[KBT'97]. New keywords and values can be added to this file if new characteristics are needed to
describe a target. POET reads the target-description file and obtains the corresponding values at the

time the target-environment application sends an initial pseudo-event to it, indicating the target type.

Before the target program starts to send any normal event data to the event server, it first sends a
special event record, called event zero, to inform the event server of a new stream of event data. This
pseudo-event contains the target identification, event parameters of the stream, etc. This information
is used by the event server to process the event data over this stream properly. The data structure of

the initial pseudo-event is as shown below:

19

typedef struct {
int magic int; /* A constant integer to indicate the byte order;*/
char magic str[4]; /* A constant string to determine character code*/
int target id; /* The target identifier */
int stream len; /* The length of a stream identifier */
int trace len; /* The length of a trace identifier */
int text len; /* The length of a text string */
unsigned flags; /* A flag field */
char stream id[1]; /* The stream identifier, the length is
specified by stream len */
} EVENT ZERO;

2.3.3.3 Event Collection APIs
POET provides a set of APIs for the instrumentation to facilitate event collection. There are three
commonly used API functions: DBG collect, DBG both_collect, and DBG text collect.

The function DBG collect is used to create and transmit a single normal event without text data. Its

interface is as below:

void DBG collect (unsigned e type, /* Event type of the generated event*/

void* e trace, /* Trace identifier of the generated
event*/

int e evcent, /* Event count of the generated
event*/

void* p_stream, /* The stream identifier of partner
event*/

void* p_trace, /* The trace identifier of partner event*/

int p_event /* The event count of partner event*/

Function DBG _text_collect is used to collect only text events and it has the following interface:

20

void DBG_text collect (unsigned e type, /* Event type */
char* e name /* Text string */

)

Another function, DBG both_collect, is used to collect event data and associated text data. It has the

following interface:

void DBG both collect (unsigned e type, /* Event type for normal event*/
void* e trace, /* Trace identifier of the

generated event*/

int e evcent, /* Event count of the generated
event*/
void* p_stream, /* Stream identifier of the

generated event*/

void* p_trace, /* Trace identifier of partner
event*/
int p_event, /* Event count of partner event*/

unsigned text e type, /* Event type for text event*/
char* e name /* Text string*/

)

A call to the DBG_both_collect function is equivalent to a call to DBG collect followed by a call to
DBG text collect. The reason for using DBG both_collect is to avoid interference between these two
calls from a different thread in a multi-threaded environment. Specifically, the text event must
immediately follow the normal event for which it provides text data, or it will either be lost, or

(worse) attach its text data to the wrong event.

2.3.4 Visualization and Analysis

The POET visualization layout is composed of a number of horizontal lines, called traces, different

types of symbols on the lines, arrowed lines connecting the symbols, efc. A horizontal line represents

21

a sequential entity (process, thread, efc.). A symbol on the line denotes an event belonging to the
entity represented by that line. The symbol shapes used to represent events in a target environment are
defined in the corresponding target-description file. An arrowed line connecting two symbols shows
the interaction (communication) between them. Two types of arrowed line are used to represent
synchronous and asynchronous communication. Figure 2.12 shows these two types of
communication. For synchronous communication, two events are connected by a vertical arrowed

line. For asynchronous communication, two events are connected by a sloping arrowed line.

POET also provides the functionality of displaying detailed information for an event and the partial
order of events. By positioning the cursor on an event and clicking the middle mouse button, the user
can see a small display field appearing beside the event. That field shows such information as the type
of the event, the name of the trace the event is on, the sequence number of the event within that trace,
and the text string, if it exists. In addition, the events that are predecessors of this event and the ones
that are successors will be colored differently. By default, all the predecessors are colored red and all

the successors are colored green. Other events (including the selected event) remain uncolored.

Figure 2.12: Synchronous and Asynchronous Communication

2.3.5 Correlation in POET

Various correlation mechanisms exist in POET. In particular, it correlates events in traces, and send-
receive and synchronous-event pairs, as well as allowing abstraction, real-time correlation, and

predicate detection.

22

A trace is a horizontal line in the visualization. In different target environments, it may represent
different entities. It can be a process, a thread, a mutex, or any sequential entity. For an event, this
trace information is a form of correlation. All of the events with the same trace identifier will be

visualized on the line representing the trace.

Send-receive pairing and synchronous-event pairing are self-evident forms of correlation. They
identify the send-receive and synchronous-event relationships between events, respectively. Such

correlations are helpful to identify the interacting pairs of events in communication environments.

Abstraction is an important technique that reduces display complexity by skipping undesired
visualization detail. In POET, there are two types of abstraction: event abstraction and trace
abstraction. Event abstraction is the process of grouping multiple events into a single abstract event
based on certain rules. Similarly, trace abstraction is a technique that groups a set of traces into a
cluster. However, these abstractions have some restrictions. For event abstraction, the event set to be
abstracted must satisfy the convexity constraint. This constraint states that there is no event outside
the convex set that happens before some event in the set while some other event in the set happens
before it. Convex abstract events keep the atomicity property of primitive events. However, this is
obtained at the expense of plausible abstract events. Figure 2.13 illustrates a plausible, but non-
convex, abstract event. The events enclosed by the dashed curve may belong to a correlated set of
events. However, they cannot be grouped into an abstract event because the set does not satisfy the
convexity constraint. The limitation of trace abstraction is that it cannot correlate events across parts

of different traces.
Predicate detection is a search mechanism that finds the event set matching predefined constraints

(predicates), especially those specifying causality relations [Xie04]. Hierarchical predicate detection

requires automated event abstraction, typically requiring the event set to be convex.

23

Client 1

Server 1

Server 2

Server 3

Client 2

/
N
<
<
L

Figure 2.13: A Non-Convex Event Set

24

Chapter 3

Event Correlation by Task

In this chapter, we will explain the task concept and describe our correlation solution within POET.
We introduce the general concepts of event correlation in Section 3.1, including correlator, domain,
and categorization. In Section 3.2, we propose our correlator, “task,” and give examples of mapping
from it to some concrete correlators. We compare event correlation and abstraction in Section 3.3. We

describe our correlation solution in detail in Section 3.4.

3.1 Event Correlation

A correlator is a function that maps events into sets. As such it must have a well-defined domain. For
example, the correlator “URL” can be used in the HTTP domain. A domain may be concrete or
abstract. An abstract domain is generic and can be mapped to any concrete domain. For example, in
POET, the trace is a generic correlator existing in an abstract domain that can be mapped to different

concrete domains, such as process, socket, or object.

In this thesis, we adopt the categorization criteria of correlation in LTA. The correlation is classified

into two types: sequential and associative.

(1) Sequential correlation orders a set of events by using a specific correlator and/or rules to put them
in some sequence according to the order of correlator values. The obvious example is to order events

by real-time timestamp.

(2) Associative correlation clusters events by using some correlator (or correlators) and/or rules. An
example is the “trace” in POET. A trace is a group that associates all events in the same sequential
entity. Correlating events based on URL or application ID in LTA are other examples of such

correlation.

Two factors affect the efficiency and effectiveness of a correlator. These factors are the degree of

independence from the target and the cost of collection.

25

The degree of independence determines the adaptability of the correlation. For example, “trace” in
POET is independent of any target. It can therefore be mapped to various entities (process, thread,
object, TCP socket, efc.). By contrast, “transaction” is bound to Web Services in Sahai’s system,
which narrows its application for other targets. The characteristics of the correlator domain determine
the degree of independence. An abstract domain enables a correlator to have a high degree of

independence.

The efficiency of correlator collection determines the efficiency of correlation. For example, the

correlator collection in the approach of Sahai et al. is not efficient.

3.2 Task Concept

An important concept in many aspects of distributed systems is “task.” A task is a set of operations or
actions that fulfill a specific computing purpose. It is an abstract concept that is meaningful for
different distributed systems, including Web Services, distributed databases, RMI/RPC, CORBA,
shared-memory systems, and parallel computing systems. In these distributed and parallel systems the
computing entities may interoperate with each other to fulfill some specific computing purpose. We

use “task” to refer to that purpose.

There are various instances for this concept of task. We give some examples to explain it in detail.

In web browsing, an instance of task might be viewing a web page. Such a task can be defined as the
procedure of getting all of the objects (text, image, Java script, etc.) to display a complete web page.
Thus, one web page display may contain multiple HTTP requests and responses. Figure 3.1 shows a
task in web browsing. In Figure 3.1, four actions occur to complete browsing a web page (i.e., web-

page A).

In Web Services, the task concept can be mapped to a business transaction. In such a context, a task
refers to a set of invocations based on SOAP messages to fulfill a business-computing service. For

example, a user purchases an item in an online store, called E-Store.com, as shown in Figure 3.2. This

26

GET Web Page A

» | Web Server
HTTP OK

<

GET Imagel

> Imagel

Browser :I
HTTP OK
Px ";;

Figure 3.1: A Task in Web Browsing

P t Ord
% E-Bank.com

Purchase Order .
I:I P Payment Confirmation

Ijl < E-Store.com
Payment Confirmation
X-Client

Shipment Order

Shipment Confirmation

Shipment.com

Figure 3.2: A Business Transaction in Web Services

service transaction comprises the subsequent set of SOAP-based invocations: the store sends an order
to the corresponding online bank, E-Bank.com, which checks the user’s bank information and gets a
payment transfer from the user’s account. The e-store then orders a shipping company,
Shipment.com, to do the shipment. In this transaction, a set of messages is transmitted and a number
of events occur in different processes. These events and messages may occur concurrently with other
messages and events from other transactions. Without correlation, it is hard to identify the messages
and events corresponding to this specific service for this specific user. Correlating these events and
messages associated with this service can help the developer find the path of the invocation and

identify any defects or bottlenecks in the whole procedure.

27

Client: Server 1: Server 2:

SomeProcedure RemoteP1 RemoteP2
{ / { / {
""" | |

...... 4 € 2
} \\ } —

Figure 3.3: A Chain of RPC/RMI

In distributed database systems, the task concept can be mapped to an ACID transaction. A simple

transaction is usually issued to the database system in SQL in this form:

Begin the transaction

Execute a sequence of SOQL actions (select, insert, update, delete, etc.)

Commit the transaction.

In RPC/RMI there may exist chains of calls or invocations. That is, a called remote procedure may
call other procedures, as shown in Figure 3.3. We refer to such chains as a “composite RPC” or a
“composite RMI” as appropriate. Such calls or invocations fulfill a specific computing task. Thus our
task concept can be mapped to the chain of calls or invocations in RPC/RMI. Such a correlation is
very helpful for the developer of RPC/RMI-based programs. It can identify all of the events involved
in a RPC call or RMI invocation. Consequently it helps a developer determine whether there is a

bottleneck or other problems in the complete operation of the composite RPC call or RMI invocation.

Based on the previous analysis, task is a generic and abstract concept of correlation that can be
mapped to specific operations in different systems. It is independent of any target system. This
characteristic makes it applicable to various target systems and it more closely reflects the natural

operation of distributed systems than does the simple collection of raw events.

28

3.3 Nested Tasks

It can be useful to consider that there are sub-tasks or child tasks, occurring in the context of a parent

task. Nested tasks are then needed to represent the relationship between task instances.

An example of nested tasks is a composite session in web browsing (e.g., purchasing items on-line).
Such a browsing session may comprise multiple web pages. Figure 3.4 shows a nested web-browsing
session. The task is the complete session that comprises multiple web-page displays, while the sub-

tasks are the display of the web pages in this session.

Another example use of nested tasks is nested transactions in a database, as shown in Figure 3.5. In
this example an outer transaction contains an inner sub-transaction. The outer transaction might be

viewed as a task, and the inner sub-transaction, its sub-task.

The nesting relationship between tasks can be represented using a tree structure. For each task record,
a field indicates its parent task. Thus, a tree comprising the parent-child relationship can be built to
represent nested tasks, as shown in Figure 3.6. This approach allows us to maintain a fixed overhead

when collecting task data. Nested tasks are not investigated further in this thesis.

3.4 Event Correlation by Task

We design a correlation solution based on the “task” concept on top of POET. We choose POET as
our base system because our correlation solution needs a target-independent platform. To enable our
correlation to function within POET, the target, the event server, and the debug-session client must
interoperate in regard to correlator data. The “task identifier,” uniquely identifying any given task in a
monitored environment, is the correlator data in our solution. Targets need to generate task identifiers
and propagate them to each other in addition to sending them to the POET event server. The POET
event server needs to process task identifiers from the target and send them to the debug-session
client on request. The debug-session client needs to have a visualization method to display those task

data received from the event server.

29

Task

s \\\\\ Web Server
A" Sub-Task 1 A
//. \\\
|:| HTTP Request1 o Web Page A
HTTP Reply 1 link
Browser cply ,
A .
A i
[}
Sub-Task 2 '
SN |
’ ~ T
e NS |
// ~. i
HTTP Request 2 T
» Web iServer
[}
HTTP Reply 2 '
\ 4
Web Page B
link
[}
1
[}
[}
|
Sub-Task 3 '
S [}
PO ,
//// \\\\ i
HTTP Request 3 l Web Server :
|
HTTP Reply 3 4
Web Page
C

Figure 3.4: A Nested Session in Web Browsing

30

Begin the transaction
. . \
Execute a sequence of SOL actions (select, insert, update, delete etc.) \
\\
\
\\
Begin a new transaction \
\ 0 \
~< \
-~ .
\\\\ \\
Execute a sequence of SOL actions RN
__---71 Sub-Task Task
- /
. . =" /
Commit the new transaction — 4 /
//
/
//
Execute a sequence of SQL actions Y
//
/
/
. . /
Commit the transaction 4

Figure 3.5: A Nested Transaction in a Database

3.4.1 Basic Consideration for Instrumentation

While the instrumentation will vary for different target environments, it should follow some generic
requirements. In this section, we describe the basic requirements for multi-process and multi-thread
environments communicating by message passing. In such environments, a process may handle

multiple tasks concurrently. The general requirements for instrumentation then include the following.

(1) The instrumentation must clearly define its task concept. That is, the instrumentation should map

the “task” concept to the desired concrete instance (ACID transaction, composite RPC/RMI, etc.).

(2) The task identifier needs to be globally unique across all threads and processes. Task identifiers
may need to propagate across multiple processes and/or threads. To prevent conflict between task
identifiers, it is necessary to keep the uniqueness of task identifier. A Universal Unique IDentifier
(UUID) [OSF93] or Globally Unique IDentifier (GUID) [EAE98] may be used in some targets. While
a UUID or GUID (a 128-bit number) is typically enough to guarantee the uniqueness, we do not

presuppose that the correlator is always a 128-bit number.

31

task ID no parent

S

task ID parent ID task ID parent ID task ID parent ID
ec0o0e task ID parent ID task ID parent ID e000oe

Figure 3.6: Tree Structure Representing Nested Tasks

(3) In addition to being unique, the identifier must have the same length across various target systems
if tasks are to be correlated across those systems. Thus, POET and the target-system instrumentation

must agree on the length of task identifiers.

(4) The task identifier needs to propagate across multiple processes that may be part of different
target environments. The instrumented environment may be of multiple processes that may be part of
different target environments. For example, enterprise-level web application systems have a multi-tier
architecture. To capture the task data in such an environment, the task identifier should be able to be
propagated across the heterogeneous platforms (web server, application server, database server, etc.).

Currently, POET cannot handle multiple targets simultaneously.

3.4.2 Propagation of Task Identifier

The task identifier needs to be propagated to any event of the task. Consider the example of a
composite RMI in Java, as discussed in Section 3.2. Such a composite RMI involves a number of
JVM processes, as shown in Figure 3.7. The task identifier of this composite RMI needs to propagate

among these JVM processes.

32

Remote Call Remote Call Remote Call
RMI | fz--———-—- | 4 RMI F=f——————- » m—mmem——- RMI

Client Server Server

JVM

>
Task Identifier Task Identifier Task Identifier
Figure 3.7: Task Identifier Propagation amongst JVM Processes
Task Identifier Task Identifier Task Identifier

in HTTP in Remote Call in DB connection
—> — — >
PEE—— < — <4— | Database

—
Client : - Server
Web Server Application Server

Figure 3.8: Task Flow across Multi-tier Web System

A more-complex example is a multi-tier web-application system. A task may include a chain of
events occurring in a web server, application server, and database server, as shown in Figure 3.8. In
this example the situation is more complex. The task identifier may be transferred by different

transport mechanisms in different layers.

The instrumentation has to associate each event with its appropriate task, and must consider two
aspects, inter-process communication (i.e., message passing) and concurrency inside a process. The
reason is that events occur in the context of both inter-process communication and concurrency. The
combination of concurrency and multiple communication channels makes it difficult to associate
events occurring in such an environment with appropriate tasks. To solve this problem, we introduce
the “task context” concept, which stands for the current task context under which an event occurs.

Figure 3.9 shows the structure of a task context.

33

Task Identifier Identifier of a Computing Entity (e.g., Thread) cecccee

Figure 3.9: The Structure of a Task Context

Since there may be multiple tasks simultaneously active in a target process, the instrumentation must
properly switch task contexts for an expected event. This can be fulfilled by attaching a task tag,

showing the task context for each thread, to each thread.

In Section 2.3.3, we introduced the method which our instrumentation uses to capture the send-
receive relationship. For POET, instrumentation should solve the problem of passing the task
identifier through send-receive pairing. Our algorithm is applied to four types of events: transmit,
receive, unary, and synchronous. A unary event occurs without any message passing. A transmit
event is a sending of a message. A receive event is a receiving of a message. A synchronous event is a

pair of sending and receiving of a message in the form of synchronous communication.

In our algorithm, we use 0 as a special value to indicate “no task.” Our algorithm is as follows.

(1) When a unary event occurs, the instrumentation simply obtains its task context (i.e., task tag) by

referencing the identifier of the thread where this event occurs.

(2) When a transmit event occurs, the instrumentation will check the task status. If the thread is
dedicated to a task, the instrumentation obtains the task identifier from the task context (i.e., task tag).
If the thread is an initiator of a new task, the instrumentation generates a new task context with a new
task identifier for this thread. The transmit event corresponds to a transmission operation. The
instrumentation appends the task identifier as well as the stream identifier, the trace identifier, and the

event count in the trace (the original instrumentation in POET) to the end of the outgoing message.

(3) A receive event occurs when a message arrives. Instrumentation determines whether it must
initiate a new task or accept the received task identifier. In the first case, the instrumentation will take

the same action as (2); otherwise, it extracts the task identifier from the message. If the task identifier

34

is 0, the instrumentation determines that no task data is associated with this message and processes
this event in the manner of one without any task identifier. If the incoming task identifier is not 0, the
instrumentation will set the task tag of the thread to the incoming task identifier and save the old one

in the case that the incoming task identifier is different from the current one.

(4) When a synchronous event occurs, the operations the instrumentation performs are similar to
those on a pair of transmit and receive events except that the receive end simply accepts the received
task identifier since it is presumed that the two end points should have a close task relationship based

on the consideration that it is not a pair of events but a single event.

3.4.3 Collection of Task Identifier

As discussed in Section 2.3.3, the instrumentation collects event data through the POET Event-
Stream Protocol. We modify this protocol in our solution by adding a new field to the normal event
data structure. This field contains the task identifier that uniquely identifies the task associated with
that event. The type of this field is a variable of type void to be adapted to various data types of
targets. In our solution, we do not specify the length of task data. Our APIs can be adapted to task
identifiers of arbitrary length. The agreement on the length of task identifier between target and event

server will be discussed later.

Considered together with the discussion in the previous section, the algorithm of task-identifier

collection is as follows. When an event occurs,

(1) If the instrumentation determines the event is associated with an existing task or that a new task

needs to be created, it puts that task identifier in the event stream and sends it to event server.

(2) If the instrumentation determines that this event does not belong to any task, it puts the special

value (i.e., 0) in the event stream to indicate no task data.
To facilitate the collection of task data, we modified the original DBG collect and DBG both_collect

interfaces of POET that were introduced in Section 2.3.3.3. The new functions have very similar

interfaces that can be easily used by the original users.

35

The first library function is used to collect a normal event with task data but without text information.
Its modified interface is shown below. The only change we made is to add an argument task ID, of
type void*, to the original interface. The target-system instrumenter can use this function to collect an
event associated with a task identifier. If an event has no task identifier, the special value will be
collected (i.e., the task identifier is set to 0, or in other words a pointer to 0 is passed to the function.).
This function can also be used by the original instrumenter to collect an event without a task identifier
since the argument, task_ID, can be compiled optionally by the preprocessor. The length of the task
identifier is defined in the header file, usr debug.h, which is included by the file in which these

functions are located.

void DBG collect (unsigned e type, /* Event type of the generated

event*/

void* e trace, /* Trace Identifier of the
generated event*/

int e evcent, /* Event count of the
generated event*/

void* p_stream, /* The stream identifier of
partner event*/

void* p_trace, /* The trace identifier of

partner event*/

int p_evcnt /* The event count of partner
event*/
#ifdef TASK
, void* task_ID /* The task identifier of the

generated event*/

#endif

The second library function is used to collect a complete event with text information and task data.

The modified interface is shown below:

36

void DBG both collect (unsigned e type, /* Event type for normal event*/
void* e trace, /* Trace identifier of the

generated event*/

int e evcnt, /* Event count of the generated
event*/
void* p_stream, /* Stream identifier of the

generated event*/

void* p_trace, /* Trace identifier of partner
event*/
int p_event, /* Event count of partner event*/
#ifdef TASK
void* task ID, /* The task identifier of the

generated event */
#endif
unsigned text e type, /* Event type for text event*/
char* e name /* Text string*/

)

3.4.4 Task Identifier Mapping

Inside the event server, we implement an optimization for processing task data, which transforms task
identifiers from their target length to a shorter internal identifier. There are two reasons for this
mapping. A task identifier from the target is long (e.g., 128 bits). The display of such an identifier in
the debug-session client is neither necessary nor desirable for the user. The other reason is that using
such an identifier causes unnecessary time and space cost for the event server and the debug-session

client.

In our solution, we use a mapping table for each POET session to transform target task identifiers to
internal ones. Each time the event server receives a task identifier from the event stream, it looks
through the mapping table for the internal identifier for that task identifier. If no matching task
identifier is found in the table, the event server creates a new entry by assigning a new integer for this

task identifier. The event server uses integer “0” to represent “no task.”

37

When POET persistently saves the event data to a UEF-formatted file, it stores the task identifier by
using the internal format, “integer identifier.” When POET restores the event data by reloading the
UEF-formatted file, it simply retrieves the integer task-identifier, pads with zero bits if the length of a
target task-identifier is larger than the length of an integer, and then sends it to the POET event

SErver.

3.4.5 Agreement on Task Data between Event Server and Target

The agreement on task data between the event server and the target includes two aspects: First, the
length of the task identifier is specified in a header file, “usr_debug.h,” which is included by both the
target-description file and the instrumentation program at compile time. Second, the event server
determines the existence of the real task identifier for each event based on this value, with the special
value “0” representing a void task identifier (i.e., no task data). We did not specify the length of the

task identifier in event zero because the version of POET we used does not use enhanced event zero.

3.5 Correlation Visualization

We adopt the POET visualization because our solution is built on top of POET. However, we use a
different visualization method for task correlation from that for abstraction. In event abstraction, a set
of events is clustered into one abstract event that can be viewed as an atomic event. This form of

display is enabled by the convexity property of abstract events, which is not present in our solution.

Instead, we combine coloring and textual display to visualize task information. We use the
functionality of the middle mouse button in POET. While keeping the basic features, we add
coloration of events with the same task identifier and indicate that task identifier in the popup

window.

When a popup box appears, a new field, an asterisk followed by a number (which is the mapped task
identifier for the event), showing the task information will follow the trace name and event sequence
number, as shown in Figure 3.11. For those events without any associated task (i.e., task identifier is

0), no task identifier is shown, which is same as the original behavior of POET.

38

The coloring for events in different tasks maintains the original coloring scheme. Events within the
same task are colored according to their precedence relationship to the event being clicked. A
summary of the default coloring of our solution is shown in Table 3.1. The colors in Table 3.1 can be

modified by using the POET resource file.

Trace 1 ; >
sync send [Tr 2, #4, * 1]

Trace 2 T S I ! >
Trace 3 I T . . " >
Trace 4 ° * i >
Trace 5 L >

Figure 3.10: Popup Window for Selected Event

Correlation Relationshin Same Task Different Task

Partial-Order Relationshin

Predecessor Light Green Red
Successor Dark Green Green
Concurrent Blue No color

Table 3.1: Coloring Matrix

39

Chapter 4

Evaluation

In this chapter we analyze the costs of our solution, examine its use in some test environments, and

compare it with existing solutions.

4.1 Cost Analysis

In our solution, extra costs are incurred since extra correlation data is collected. These costs include

computing costs, communication costs, and storage costs.

On the target-system side, there will be an O(/) cost for each new task. For each event, if the task
identifier is required, there is an O(1) cost when it is copied. On the event-server side, the processing
cost for the transformation of task identifiers is O(N), where N is the number of tasks. This cost can
be reduced to O(1) amortized by the hashing method in which each task identifier from the target is
hashed to a value, which is used as the index of the internal task identifier. On the debug-session side,

the cost is O(1) for processing the task identifier for each event.

The increased communication costs include three parts. The communication cost from the target side
to the event-server side increases by V, bits per event, where V; is the length of a task identifier
generated by the target. Similarly, the communication cost of passing task data between targets
increases by ¥, bits. The communication cost from the event-server side to the debug-session client
side, however, is more complex to analyze, since event data is transported to the client in discrete
blocks of multiple events. With task data present, there will be fewer events per block, but the block
size remains the same. The effect is that for sequential access, ignoring block-header-size overhead,
the cost increases by 4 bytes per event on average. For random-access, however, the communication-
cost may not increase, but could double in the worst case. Specifically, when a set of consecutive
events being accessed continues to fit into a single block, the cost does not change. If, on the other
hand, the shift in the position of block boundaries causes a small set of events formerly in a single
block to cross a block boundary, two blocks will need to be fetched rather than a single block,
doubling the cost.

40

Events

Debug-session Process : g
POET Client-server Protocol

Raw Events Server

Testbed Process]4 P

Event

Testbed Commands

Event-Stream Protocol

DBG _collect() DBG collect_both()

Figure 4.1: Testbed Environment of POET

As discussed in Chapter 2, POET may persistently store the event file on disk as a UEF-formatted
file. With the task-identifier data, a UEF-formatted file contains an additional field for each event.
Because the event server transforms the task identifier from target-specific format to an internal one,
the length of the task identifier is reduced. Consequently, the extra storage cost for a UEF-formatted
file is small for each event entry. For example, an integer in a UEF-formatted file occupies a small
number of bytes. Compared with the length of target-generated task identifiers, typically 32 bytes, the
persistent storage is reduced for each UEF-formatted file. An example of a UEF-formatted file with

integer task identifiers is shown in Appendix B.

4.2 Evaluation of Task Data Collection

To test the feasibility and efficiency of our approach, we use the testbed tool to send event data to the

POET server, and then display it with the debug-session process.

4.2.1 Testbed Environment

The testbed tool interacts with the end user or reads input from a script file, using the DBG collect
and DBG collect_both API functions to send these events to the event server, as shown in Figure 4.1.
By using testbed, the user can create virtually arbitrary displays for testing various facets of the

debugger.

41

4.2.1.1 Syntax of Testbed

We made some modifications to the original testbed program, which enables it to generate task data.

We implement two new commands in testbed. The new commands are shown in Figures 4.2 and 4.3.

trace_number trace number #: task identifier

Figure 4.2: Binary Events with Task Data

trace_number #: task identifier

Figure 4.3: Unary Events with Task Data

The identifier following the “z:” is associated with the event(s) as the task identifier. If there is no “t:”
in the line (i.e., the original commands), it is presumed that the event has no associated task ID. Three

sample scripts for our modified testbed program are shown in Appendix C.

4.2.1.2 Results

We use three scripts to test our solution. The first one tests simple synchronous events. The second
tests simple asynchronous events. The third one tests the visualization of an event set that is not
convex. In these displays, various shades of gray are used to visualize the task information of events.
The events enclosed in a dashed curve belong to the same task. The dashed curve and the associated
text are not parts of our visualization. They are used to enable the reader to more easily understand

the diagram.

In the first test, there are two tasks. The events belonging to them form two sets. The remaining
events, without task identifiers, belong to no task. Figure 4.4 shows the visualization of this script. In
this visualization, we select two events to display the task information. The displays for these events

are shown in Figures 4.5 and 4.6.

42

v estbed Debugge

Functions Re-order traces Options Ewvent abstraction

trace 1 < m {:] >

trace 2 <. ® =] >
Etr'ac:e ERA {:] >
étr'ac:e 4< = | =g
itr‘ac:e 5< = - - - & | >
.tr'ac:e E< m 1 >
trace 7 <. ® | =g
?tr'ac:e i< = | >
étr'ac:e 1< = | =g
;tr'ac:e 10 m | =g
%tr‘ac:e 11 = | >
étr'ac:e 120 = | >

Figure 4.4: Visualization of Script 1

[Testbed Debugger
Functions Re-order traces 0Options Ewvent abstraction

Etr'ac:e 1< = 0 >
étr'ac:e 2< B | > :
étr'ac:e ERE - {
étrace 4 < ® -
étrace RO - * o - > s =
;tr‘ace e N |sunc_send [trace 6, #6, *11 =
%tr'ace T m 'm| -

|

étr'ace 8 < = | =
e = Task 1 >
étr'ace 10 = m] -
étr'ac:e 11 = 'm| -~
étr'ac:e 12 = m| =

Figure 4.5: Display of an Event of the First Task

43

viEO T L
Functions Re-order traces Options Ewvent abstraction
itrace 1< = {iz] >
trace 2 < m 1| =1 |
trace 3 = =] >
trace 4 <. = 1 >
%tr'ac:e b ® & & e} & 1 =g I
itrace E< m | =
étr'ac:e T = o3| ==
trace 8 < = =] ==
< Task 2
trace 3 < = =] =1 |
trace 10< m 0 > -
trace 112 ® | =
:tr'ac:e Legm |qunc_send [trace 12, #2, *2]| 5

| :

Figure 4.6: Display of an Event of the Second Task

In the second test, there are two tasks. Figure 4.7 shows the visualization of this script. Figures 4.8

and 4.9 show two events with task information.

b4 Testbed Debugger

Functions Re-order traces Optionsz Ewvwent abstraction

trace 1< m =\‘ . =\‘ | =
?tr'ace Ll » "\‘ - ‘/' - ‘/'EI i
;‘trace EE

;tr'ace i = =\‘ O m| =
;‘trace [T v’ 2\- - / L .
trace < m o

.
o
P

b

Figure 4.7: Visualization of Script 2

44

b4 Testbed Debugge -?I:Iix

' Functions Re-order tracesz Options Event abstraction

»

. -
)

;tr'ac:e 1< = =\- \ .
:’trace 2 ® o “\- / . =\- /= / O > '
itrac:e FLa ‘/ -

»

i ‘|asunc/send [trace 3, #6, 11

>

?tr*ac:e i< = =\- - 0 T -
2 5< ® o0 o /El >
| race \ / Task 1
trace 6= m » - O > i

Figure 4.8: Display of an Event of the First Task

»

£

b d Testbed Debugge -

' Functions Re-order tracesz Options Event abstraction

;trac:e 1< =® =\- “\-
trace 2« W o “\- - / w’ \-
trace 3« m /

AN
B

- | >

iftr'ac:e LE -

\- / 44— Task2

trace 5< = 4o "\- /= - | >
- =

'/|{sgnc send [trace 6, #3, *2]|

i|

Figure 4.9: Display of an Event of the Second Task

trace B< ®

In the third test, we see that our correlation is not constrained to be convex. Figure 4.10 is the
visualization of script 3, which is listed in Appendix C. Figures 4.11 and 4.12 show two positioned
events that belong to two different tasks. The events belonging to the first task cannot be abstracted

because the event set is not convex.

45

b4 Testbed Debugger

Functions Re-order traces 0Options Ewvent abstraction

| =
trace 2< W I] =
trace 3< B I I | =

e . - }

trace 1< = I

trace b= =

Figure 4.10: Visualization of Script 3

ud Testbed Debugger e = : x

Functions Re-order traces Options Ewvent abstraction

trace 1< U] =
I @—— Task |

trace 2 I E sync send [trace 2, #4, *1]r

trace 3= T i b Ll H

trace 4= T » Ll 2

trace D= ; 1 =

)

Figure 4.11: Display of an Event of the First Task

46

b4 Testbed Debugger

Functions Re-order traces Options Event abstraction

;tr‘ace 1= 2 -
:tr‘ace 2= l I = =
trace 3< l I = -
Etr‘au:e 4= g I 1 - =

| T l@——— Task2

:tr*ace o o sqlmn; recy [trace 5, #2, *E]| 2
s e

Figure 4.12: Display of an Event of the Second Task

4.3 Java RMI Environment

Java RMI enables programmers to invoke methods on remote objects residing in other Java Virtual
Machines [RMI Website]. Fundamental to RMI is the object serialization to transmit parameters
between the client and server. The stub and skeleton act as proxy objects that communicate with each

other to transmit the parameters and return value. The architecture of RMI is shown in Figure 4.13.

In Section 3.2, we discussed the mapping of “task” in the Java RMI environment. That is, a task in
RMI may refer to a chain of invocations. All of the invocations in this chain implement the original
computing purpose initiated by the first RMI client. An example of a composite-RMI invocation is

shown in Figure 4.14.

In a composite RMI, the intermediate RMI server acts as both a client and a server. On the one hand,
it receives the invocation request from the client. On the other hand, it invokes a method on another
remote object. The intermediate RMIs and execution at the final server do not occur independently,

but in the context of the initial RMI. Figure 4.15 shows the infrastructure of the composite RMI.

47

RMI Client

Application

Marshal Un-marshal Marshal Un-marshal

t Transferring of Marshaled Data T
Stub e ---» Skeleton
VM Transport Channel JVM

|~ ——

Figure 4.13: Java RMI

RMI is a multi-threaded environment. The threads in RMI can be categorized into two types: the
daemon threads and the service threads. The daemon thread is responsible for receiving an incoming
RMI request and dispatching it to a spawned service thread. A service thread is created by the
daemon thread to fulfill the concrete computing for an RMI request. Such a thread structure is shown

in Figure 4.16.

4.3.1 Instrumentation

To instrument Java RMI, we capture the events at the thread level. Therefore, a trace represents a

thread in our implementation. Our instrumentation captures the following types of events:

Figure 4.14: A Composite RMI

48

Java Java RMI Server 1 Java RMI Server
Application 2
RMI Stub Skeleton RMI Stub RMI Skeleton
JVM < > JVM < > JVM

Figure 4.15: The Infrastructure of Composite RMI Invocation

* RMI Trace Start: a daemon thread or an RMI client thread starts.

* RMI Trace Create: a daemon thread spawns a service thread.

* RMI Trace Spawned: a new service thread is spawned in response to an RMI.

* RMI Invocation: an RMI client invokes a remote call.

* RMI Request: an RMI server receives an RMI call request.

* RMI Reply: an RMI server replies to an RMI call request.

* RMI Return: an RMI client receives the return values of an RMI call if the return
type is not void.

* RMI Served: an RMI server finishes an invocation service without a return value (i.e., the
return type is void for an RMI call). There is no synchronization between the RMI

client and the RMI server when the return type is void for an RMI call.

Since the “Exit” event is not in our research scope, we do not collect it. In our instrumentation, the

event types are defined in a class called EventType that is shown below:

public class EventType{
public final static int RMI TRACE CREATE = I;
public final static int RMI TRACE SPAWNED = 2;

public final static int RMI INVOKE = 3;

49

public final static int RMI REQUEST = 4;
public final static int RMI REPLY = 5;
public final static int RMI RETURN = 6;
public final static int RMI SERVED = 7;

public final static int RMI TRACE START = §;

/
Service Marshal the Returns/Parameters
Thread >
RMI Requests
—» i
| Daemon Spawn and Dispatch Service Marshal the Returns/Parameters
Thread p Thread
—>
Service
Marshal the Returns/Parameters
Thread

Figure 4.16: Thread Structure in Java RMI

4.3.1.1 Event Collection

Event collection has two parts: one is on the RMI server and the other is on the RMI client. On the

server side, the instrumentation is inserted into the skeleton; on the client side, the instrumentation is

50

inserted into the stub. Both of them use a set of Java functions implemented by a class called Collect.
The interfaces of the collection functions are the same as in the C collect functions, modified for the

Java type system. The static method collect init() is used to collect event zero.

public class Collect{

On the RMlI-client side, three types of events are collected, which are RMI Trace Start, RMI
Invocation, and RMI Return. The collection algorithm is as follows:

* When an RMI client thread starts, the instrumentation collects an RMI Trace Start event. For the
RMI Trace-Start event, a text event is collected following it.

* When the client stub invokes a remote call and marshals the call parameters, the instrumentation
collects an RMI Invocation event.

e When it receives and un-marshals the return value, the instrumentation collects an RMI Return

event.

On the RMI-server side, six types of events are collected, which are RMI Trace Start, RMI Trace
Create, RMI Trace Spawned, RMI Request, RMI Reply, and RMI Served. The collection algorithm is
as follow:

* When a daemon thread starts, the instrumentation collects an RMI Trace Start event. For this event,
a text event is collected following it.

» Each time the server skeleton receives an RMI request, it creates a service thread for this RMI
invocation. The instrumentation collects an RMI Trace Create event for the daemon thread and an
RMI Trace Spawned event as the first event of the spawned thread.

* When the service thread unmarshals the parameters of the RMI, the instrumentation collects an RMI
Request event.

When the RMI finishes in the service thread,

51

* The instrumentation collects an RMI Reply event if this RMI call has a return value;
¢ The instrumentation collects an RMI Served event if this RMI call has no return value. In this case,

the RMI call has “void” return type.

4.3.1.2 Task Data Collection

Our instrumentation to collect task data includes three parts: generation of task identifiers,

propagation of task identifiers, and collection of task identifiers.

* Generation of Task Identifier
In a composite RMI, the generator of a task identifier is the end client. The length of task identifier is
16 bytes in our instrumentation. Our instrumentation uses a class called TaskID to handle the

generation of the task identifier. The main methods of this class are shown below:

public class TaskIDGenerator{
public static byte[] getTaskID(),

public static boolean isZero(byte[] taskID),

/

Since our solution is based on the thread level, the thread is the “real” generator of the task identifier.
For a composite Java RMI, only the extreme-end client is the initiator of the task. The intermediate
clients (also acting as servers) just propagate task identifiers. We use a flag for each thread to indicate
whether it is an extreme-end RMI client. This flag of a service thread is set at the time the daemon
thread spawns the thread. The operation of an RMI server is such that a service thread must be
spawned for an object to accept remote requests. Thus every RMI server will have this flag set and
only the extreme-end client will not have the flag set. The instrumentation then determines whether

the thread is the one initiating a task by whether or not this flag is set.

52

* Propagation of Task Identifier
After the task identifier is generated, we need to propagate it along the RMI call path. When an RMI
server invokes a remote call on other RMI servers, instrumentation has to deal with the propagation of

the task identifier for these invocation calls.

In accordance with our generic algorithm of Section 3.4.2, the mapping mechanism between the task
identifier and the thread is needed in the instrumentation. In our instrumentation, this mapping
mechanism is implemented by attaching a task tag to each thread. A thread can retrieve the task

identifier with which it is associated from the tag by using function shown as below:

byte[] Thread.currentThread().gettaskiD(),

In our instrumentation, the propagation of task identifiers is fulfilled by marshaling and un-
marshaling the task identifier wrapped in the RMI request, as shown in Figure 4.17. This procedure is

transparent to the applications.

The propagation algorithm is as follows:
* When an RMI client marshals the parameters, the instrumentation marshals such additional data as
the stream identifier (uniquely identifying an event stream), the trace identifier (uniquely identifying a

thread), the event-sequence count, and the task identifier.

* When an RMI server receives an invocation request, the instrumentation un-marshals those
additional data (the task identifier, etc.). Then, it sets the task tag of the spawned service thread to this

incoming task identifier.

¢ Collection of Task Data

The length of task identifier is defined in a class called TaskProperty, which is shown as below.

public class TaskProperty {
public final static int taskID Length;

}

RMI Client
RMI Request RMI Server
Thread Task Identifier | Call Parameters Daemon . Thread
q Spawn and Dispatch

Thread I Task

Task -
Task
Tag < > Tag

Propagation of the Task Identifier from an RMI Client to an RMI Server

Figure 4.17: Propagation of Task Identifier

The instrumentation uses the collection methods of the Collect class to collect the task identifier as

well as other event information (i.e., event sequence count, trace identifier, and stream identifier).

4.3.2 Visualization

In our visualization, a trace represents the execution of a thread. The symbol shapes of events are
defined as:

(a) The “RMI Trace Start” event is represented by the filled square.
(b) The “RMI Trace Create” and “RMI Trace Spawned” events are represented by the open circles.

(c) The other events are represented by filled circles.

All of these are specified in the target-description file.

4.3.3 Results

Our sample source code is given in Appendix D. The results of the sample are shown in Figure 4.18.

Figure 4.19 shows the display, including task information, when an event is selected.

54

hd RMI Debugger
Functions Re-order traces Options Event abstraction
RMI Server 2 e > ERMI daenan thread < —0—0
RMI Server 1 e 'S RMI Haenion: theead Sl T_C
RMI Client] e 'S imin < m
Spawned v RHI service thread (2)- 129,97,108,9< LL--
Service Threads PRI cervice thread (2)- 120.57.106,3< i
RMI Client2 | ein <w
‘ RHL service thread (3)- 129.97,108,9< |8 it
Figure 4.18: The Visualization Result for the Sample Source Code
b4 RMI Debugger
| Functions Re-order traces (Dptions Event abstraction
RMI Server 2 - > .RMI e L
RMI Server 1 e > R e thrs S e
RMI Client] eeeereessses > : i < ‘
| R service thread (2)- 126.57,106,5< il'_L---
Spawned
Service Threads *.. WP |l sovice hresd (2 IDGT463C Broeeoefonos [send rni result [RHL service thread (2)- 123,07,106,9, #2, #11}
RMI Client2 B> hain < B
‘ .RHI service thread (3)- 129,97,108,9< |8

Figure 4.19: Display of a Positioned Event

4.4 Comparison with LTA

Our solution has the following advantages over LTA:
(1) LTA has no “task” concept as we define it. The correlation domains adopted by LTA currently are

not abstract, whereas our “task” concept is an abstract correlation domain. It can be mapped to

55

various target environments (Web Services, Java RMI, efc.). Thus, our correlation technique has good

target independence.

(2) Our solution maintains all of the features of POET. Our solution therefore can visualize partial-

order as well as task information. LTA does not present partial-order information.

4.5 Comparison with the Approach of Sahai et al.

The idea of task comes from the approach of Sahai et al. However, our solution has various

advantages over it.

(1) The approach of Sahai et al. is target-dependent. Its concept of “transaction” is bound to Web
Services and its “transaction” data collection relies on XML-formatted messages and SOAP. While it

is limited to a specific target, our solution is independent of any target.

(2) Our solution is more scalable and efficient than the approach of Sahai et al. in terms of
correlation-data collection. The task data appended to each message is of constant length in our

solution, while that in the approach of Sahai ef al. is variable and frequently very large.

4.6 Comparison with POET Abstraction

Event abstraction and task correlation are not alternative but complementary techniques in POET.

Both of them are useful in analyzing event data. They differ in many aspects, including the following:

(1) Our solution focuses on the identification of tasks. It does not necessarily reduce the display
complexity. In some sense, our solution increases the display complexity by adding more coloring
options, while event abstraction reduces the visualization complexity by clustering multiple events

into a single one.

(2) They have different visualization methods. Our solution uses a coloring scheme (and pop-up text

box) to visualize task correlation while event abstraction uses a clustering method.

56

(3) The most important difference is that task correlation is not restricted to the requirement of
convexity to preserve the partial order. Such a difference enables task correlation to be applied to
more event sets than event abstraction. Therefore, task correlation is more flexible, and has broader
application. While it is possible to create abstract events from sets of events with the same task

identifier if those sets happens to be convex, in the general case this will not be possible.

57

Chapter 5

Conclusions and Future Work

In this thesis, we have explored a new correlation scheme, correlation by task. From our work, we

draw the following important conclusions.

First, we have eliminated the target dependence of the “transaction” concept in the approach of Sahai
et al. by redefining the “task™ concept. “Task™ is a generic correlation function, and has an abstract
domain that can be mapped to various concrete ones in various target systems. As discussed in
previous chapters, we have seen various “task’-correlator instances mapped from our generic

correlator into real target systems.

Second, we have developed a correlation solution on top of POET based on our “task” correlator. In
our solution we provided a visualization method for task correlation. We proposed general
requirements and an algorithm for the instrumentation of target systems. According to these

requirements we instrumented Java RMI and successfully collected task data.

We used both the testbed tool and Java RMI to evaluate our solution and achieved the expected
results. According to our cost analysis, our solution overcomes the scalability problem in Sahai’s
system. Therefore our solution is efficient and of good scalability, which is another advantage over

the approach of Sahai et al.

From the discussion above, we conclude that our solution is a feasible, efficient, and scalable

correlation solution. It is useful for the user to identify the relationships of events for various targets.

5.1 Future Work

There still exist some potential extensions for our work. They include:
(1) While we gave the basic idea of how to represent nested tasks, we did not implement nested-task
collection and visualization in POET. Our coloring solution to visualize task data is not suitable for

nested tasks since it will make the display complex and difficult to present task patterns.

58

(2) Integration of task correlation and event abstraction. Our work focused on the correlation of
primitive events. We have not taken abstract events into account. Such work can be considered
together with that presented here. For example, one possible approach is to use event abstraction to
cluster the events in some level of a task hierarchy. The correlation can be applied in the upper level
of the task hierarchy. By integrating task correlation and event abstraction, the visualization of nested

tasks may be solved as well.

(3) There is much practical work in the instrumentation of other targets, especially those of
heterogeneous systems, such as Web Services and multi-tier web applications. “Task” is very useful
in such targets. The reason that we did not instrument such systems is that POET cannot provide
multi-target functionality at this time. However, we believe that POET will provide such functionality
in the near future as it is evolving fast. At the time POET is able to do that, our solution should
produce more valuable information for the user to monitor multi-target systems and analyze their

behavior.

59

Appendix A
A SOAP Message Containing MDR

(Below is from [SMO"02])

<SOAP-ENV:Envelope
xmlns:SOAP-ENV=http://schema.xmlsoap.orqg/soap/envelop/
SOAP-ENV: encodingStyle: http://schema.xmlsoap.org/soap/encoding/>

<SOAP-ENV: Header>

<MDR>

<parent mdr><parent mdr>

<message id>a unique message id number</message id>

<message type>a type of message</message type>

<source>a source identifier</source>

<target>target identifier</target>

<time sent>a time record</time sent>

<time received>another time record</time received>

</MDR>

</SOAP-ENV:Header>

<SOAP-ENV: Body>

<PurchaseOrder>

<Item count = 100> Postit sticky notes </Item>

<Item count 200> Stapler </Item>
<PurchaseOrder>
</SOAP-ENV: body>

</SOAP-ENV: Envelope>

60

Appendix B
A UEF-Formatted File

#ADED Ascii Dump of Event Data file

#Version 1.0

#2180

#1090341567

6aba7775

4

4

25

00000010

3

0 00000000

1 01000000

2 02000000

3

0 0 280e74ffffffef

1 1 S54ffffffbc042b

2 2 O3ffffffaeffffffeffffrffdf
1 0 0 -1 -1 1
1 1 0 -1 -1 1
1 2 0 -1 -1 1
2 0 1 -1 0 1
3 1 1 0 1 1
2 1 2 -1 0 1
3 2 1 1 2 1
2 2 2 -1 0 1
3 1 3 2 2 1

61

62

Appendix C
Sample Testbed Scripts

Script 1
#begin

start 0 "trace 1"

start 1 "trace 2"
start 2 "trace 3"
start 3 "trace 4"
start 4 "trace 5"
start 5 "trace 6"
start 6 "trace 7"
start 7 "trace 8"
start 8 "trace 9"
start 9 "trace 10"

start 10 "trace 11"
start 11 "trace 12"
Do a simple synchronous RPC without task data

0 1

NW N G W N
S = N W N N W N

I~

63

#Do a chain of simple synchronous RPCs with task
0 1 t: 1234567890abcdef
4

t: 1234567890abcdef
t: 1234567890abcdef
1234567890abcdef
t: 1234567890abcdef
t: 1234567890abcdef
t: 1234567890abcdef

t: 1234567890abcdef

I~

t: 1234567890abcdef

LN W N N W N R N NN
N RN W N N W N O,
o+

0 t: 1234567890abcdef
#Do another chain of simple synchronous RPCs with task
6 7 t: 9876543210fedcha
7 8 t: 9876543210fedcba
8 9 t: 9876543210fedcha
9 10 t: 9876543210fedcha
10 11 t: 9876543210fedcha
11 10 t: 9876543210fedcbha
10 9 t: 9876543210fedcha
9 8 t: 9876543210fedcha
8 7 t: 9876543210fedcha
7 6 t: 9876543210fedcba
#end

64

Script 2

#start

start 0 "trace 1"
start 1 "trace 2"
start 2 "trace 3"
start 3 "trace 4"
start 4 '"trace 5"
start 5 "trace 6"
async

#The first set of events without task identifier
0 1
2

_ NN
[y

#The second set of events with task identifer
0 1 t: abcdef0987654321

1 2 t: abcdef0987654321

2 t: abcdef0987654321

2 1 t: abcdef0987654321

1 0 t: abcdef0987654321

#The third set of events with task identifier
3 4 t: fedchba0987654321

4 5 t: fedcba0987654321

5 t: fedcba0987654321

5 4 t: fedcha0987654321

4 3 t: fedcba0987654321

65

Script 3

#start

start 0 "trace 1"
start 1 "trace 2"
start 2 "trace 3"
start 3 "trace 4"
start 4 '"trace 5"

#The first set of events with task identifier
0 1 t: alb2c3d4e5£60987
1 2 t: alb2c3d4e5f60987
3 t: 9f8e7dé6c5b4a0123
t: 9f8e7décbb4a0123
t: 9f8e7d6c5b4a0123
9f8e7d6c5b4all123
t: alb2c3d4e5£60987

[S O L\ T VU N
S ~ 9 W N
o+

t: alb2c3d4e5£60987

#end

66

Appendix D
Java RMI Sample Codes

1. RealTime.java

import java.net.*;
import java.rmi.*;
import java.rmi.registry.*;
import java.rmi.server.*;
public class RealTime extends UnicastRemoteObject
implements RealTimel

{

public RealTime () throws RemoteException {

// super () ;
}
public long getRealTime () throws RemoteException {

return System.currentTimeMillis();

public static void main(String[] args) {

try |
RealTime rt = new RealTime () ;
Naming.rebind("//localhost:1099/RealTime", rt);
System.out.println ("RealTime Ready to do Time");
} catch (Exception e) {

e.printStackTrace();

67

2. PerfectTime.java

import java.net.*;

import java.rmi.*;

import java.rmi.registry.*;

import java.rmi.server.*;

public class PerfectTime extends UnicastRemoteObject

implements PerfectTimel

public PerfectTime () throws RemoteException {}

public int getPerfectTime () throws RemoteException {
RealTimel rt;
long rtime;
try |
rt=(RealTimeI)Naming.lookup("//localhost:1099/RealTime") ;
rtime = rt.getRealTime();
} catch (Exception e){e.printStackTrace(); return 0;}

return 1;

public static void main(String[] args) {
try |
PerfectTime pt = new PerfectTime();
Naming.rebind("//localhost:1099/PerfectTime", pt);
System.out.println ("Ready to do Time");
} catch (Exception e) {

e.printStackTrace(); }

68

3. DisplayPerfectTime.java
import java.rmi.*;

import java.rmi.registry.*;
public class DisplayPerfectTime {

public DisplayPerfectTime () {

super () ;

public static void main(String[] args) {

try |
for (int 1 = 0; 1 < 2; i++) {
PerfectTimel t = (PerfectTimel)Naming.lookup

("//localhost:1099/PerfectTime") ;

System.out.println ("PerfectTime:"+t.getPerfectTime ())

}
} catch (Exception e) {

e.printStackTrace () ;

69

References

[And"88] G. R. Andrews, et al. An overview of the SR language and implementation. ACM Trans.
Progr. Languages Systems, 10, 51-86. 1988.

[AOK'95] E. Arjomandi, W. O'Farrell, 1. Kalas, G. Koblents, F. C. Eigler, and G. R. Gao. ABC++:
concurrency by inheritance in C++. IBM Sys. J., 34, 120-137. 1995.

[BuS91] P. A. Buhr and R. A. Stroobosscher. The pSystem: Providing light-weight concurrency on
shared-memory multiprocessor computers running Unix. Software - Practice Exper., 20, 929-963.

1991.

[CBE Website] Many Chessell, Jason Cornpropst, John Gerken, Bill Horn, Heather Kreger, Eric
Labadie, David Ogle, and Abdi Salahshour. Specification: Common base event. Available at
http://www-106.ibm.com/developerworks/webservices/library/ws-cbe/. July, 2003.

[EJE98] Guy Eddon and Henry Eddon. Inside Distributed COM. Microsoft Press, February, 1998.
[GBD94] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM:
Parallel Virtual Machine. A User's Guide and Tutorial for Networked Parallel Computing. MIT

Press, Cambridge, MA. 1994,

[GKV94] Siegfried Grabner, Dieter Kranzlmuller, and Jens Volkert. EMU - Event Monitoring Utility.
Technical Report, Institute for Computer Science, Johannes Kepler University Linz, July 1994,

[GEG'01] Thomas Gschwind, Kave Eshghi, Pankaj K. Garg, and Klaus Wurster. Web Transaction
Monitoring. HPL-2001-62, http://www.hpl.hp.com/techreports/2001/HPL-2001-62.html.

[LogTrace Website] IBM Corporation. Log and Trace Analyzer for Autonomic Computing. Available
at http://www.alphaworks.ibm.com/tech/logandtrace.

70

[OLT Website] IBM Corporation. WebSphere application server, Object-Level Trace. Technical
Report. Available at http://www-306.ibm.com/software/webservers/appserv/olt.html, IBM
Corporation, 1998.

[LTA Documents] IBM Corporation. Log and Trace Analyzer Version 1.0.1, Help Documents, IBM
Corporation, 2003.

[KGVI95] Dieter Kranzlmuller, Siegfried Grabner, and Jens Volkert. Race condition detection with
the MAD environment. In Second Australasian Conference on Parallel and Real-Time Systems,

pages 160-166, September 1995.

[KGV97] Dieter Kranzlmuller, Siegfried Grabner, and Jens Volkert. Debugging with the MAD
environment. Journal of Parallel Computing, 23(1-2):199-217, April 1997.

[Kun93] Thomas Kunz. Issues in event abstraction. In Proceedings of PARLE '93: Parallel
Architectures and Languages Europe. Edited by Arndt Bode, Mike Reeve, and Gottfried Wolf.
Published by Springer-Verlag, Munich, Germany. Lecture Notes in Computer Science. Number 694,
pages 668-671, June 1993.

[Kun94] Thomas Kunz. Abstract Behaviour of Distributed Executions with Applications to

Visualization. Technische Hochschule Darmstadt, Darmstadt, Germany. May 1994.
[KBT'97] Thomas Kunz, James P. Black, David J. Taylor, and Twan A. Basten. POET: Target-
system independent visualizations of complex distributed-application executions. The Computer

Journal, 40(8): 499-512, 1997.

[Lam78] L. Lamport. Time, clocks, and the ordering events in a distributed system. Communications

of the ACM, 21(7): 558-565, July 1978.

[Lok95] Swee Loke. Debugging Support for a Real-time System. Master’s thesis, Queen’s University,
1995.

71

[E-XML website] OASIS. E-business XML. Available at http://www.ebxml.org.

[UDDI Website] OASIS. Universal Description, Discovery, and Integration. Available at
http://www.uddi.org.

[OSF93] Open Software Foundation. Introduction to OSF/DCE. Prentice-Hall, Englewood Cliffs, NJ.
1993.

[SMO'02] A. Sahai, V. Machiraju, J. Ouyang, and K. Wurster. Message tracking in SOAP-based web
services. Network Operations and Management Symposium, 2002. NOMS 2002. 2002 IEEE/IFIP, 15-
19 April 2002, pages 33- 47.

[See95] Ilene R. Seelemann. Visualizing Concurrent Object-oriented Programs. Master’s thesis,

University of Waterloo, Waterloo, Ontario, Canada. June 1995.

[SBL'91] Robert E. Strom, David F. Bacon, Andy Lowry, Arthur P. Goldberg, Daniel M. Yellin, and
Shaula Yemini. Hermes: A Language for Distributed Computing. Prentice-Hall, Englewood Cliffs,
NJ. 1991.

[Tay95] David J. Taylor. Event display for debugging and managing distributed systems. Proceedings
of International Workshop on Network and Systems Management, pages 112-124, August 1995.

[Tay03] David J. Taylor. File format for POET event-dump (.uef) files. Unpublished. November 18,
2003.

[Tay97] David J. Taylor. The POET Prototype: Structure and Operation. Unpublished. January 7,
1999.

[TKB95] David J. Taylor, Thomas Kunz, and James P. Black. Achieving target-system independence

in event visualisation. In CD-ROM Proceedings of the 1995 CAS Conference. IBM Canada Ltd.
Laboratory, Centre for Advanced Studies. Toronto, Ont., Canada. November 1995, pages 296-307.

72

[War02] Paul A. S. Ward. 4 Scalable Partial-Order Data Structure for Distributed-System
Observation. Waterloo, Ontario, Canada, 2002.

[SOAP website] W3C. Simple Object Access Protocol. Available at http://www.w3.org/TR/soap.

[WSDL Website] W3C. Web Services Description Language. Available at
http://www.w3.org/TR/wsdl.

[Xie04] Ping Xie. Convex-Event Based Offline Event-Predicate Detection. Master’s thesis, University
of Waterloo, 2004.

[YGS'89] S. A. Yemini, G. S. Goldszmidt, A. D. Stoyenko, and Y. H. Wei. CONCERT: A high-
level-language approach to heterogeneous distributed systems. In Proc. 9th Int. Conf. on Distr.
Comput. Systems, Newport Beach, CA, June, pages 162-171. IEEE Computer Society Press, Los
Alamitos, CA. 1989.

73

	Introduction
	Motivation
	Limitations of Existing Systems
	Contributions
	Organization

	Background and Related Work
	IBM Log and Trace Analyzer (LTA)
	Event Data and Collection
	Event Visualization and Correlation
	Limitations and Restrictions

	Message Tracking in Web Services
	Web Services and Messages
	SOAP Message Tracking
	Message Data
	Message Tracking and Correlator Collection

	Visualization
	Drawbacks and Limitations

	POET
	Event-based Model
	Event
	Event Collection

	Architecture of POET
	Event Collection
	UEF-Formatted File
	Target-System Independence
	Event Collection APIs

	Visualization and Analysis
	Correlation in POET

	Event Correlation by Task
	Event Correlation
	Task Concept
	Nested Tasks
	Event Correlation by Task
	Basic Consideration for Instrumentation
	Propagation of Task Identifier
	Collection of Task Identifier
	Task Identifier Mapping
	Agreement on Task Data between Event Server and Target

	Correlation Visualization

	Evaluation
	Cost Analysis
	Evaluation of Task Data Collection
	Testbed Environment
	Syntax of Testbed
	Results

	Java RMI Environment
	Instrumentation
	Event Collection
	Task Data Collection

	Visualization
	Results

	Comparison with LTA
	Comparison with the Approach of Sahai et al.
	Comparison with POET Abstraction

	Conclusions and Future Work
	Future Work

