
Collecting Task Data in Event-Monitoring

Systems

by

JIAJUN WU

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Applied Science

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2004

©Jiajun Wu 2004

I hereby declare that I am the sole author of this thesis.

I authorize the University of Waterloo to lend this thesis to other institutions or individuals for the

purpose of scholarly research.

I further authorize the University of Waterloo to reproduce this thesis by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly

research.

 ii

The University of Waterloo requires the signatures of all persons using or photocopying this thesis.
Please sign below, and give address and date.

 iii

Abstract

Event correlation is an important analysis technique in monitoring systems. Various correlation

methods have been widely applied in many systems. Recently, Sahai et al. proposed a correlation

scheme based on the “transaction” concept in Web Services. While it has limited application because

of its target dependence and scalability problems, the idea behind this solution is useful for

identifying behavior patterns in distributed and parallel systems. Existing monitoring systems have no

correlation method analogous to that of Sahai et al. We therefore wished to extract the general

transaction concept and develop a correlation solution independent of the target system.

This thesis explores the task-based correlation mechanism in monitoring systems. We define a

generic correlator independent of any target system. This correlator can be mapped to various

concrete instances in various target systems. We develop a correlation scheme based on this correlator

on top of the Partial-Order Event Tracer (POET). Our solution provides the general requirements for

instrumentation as well as an algorithm to collect task-based correlation data and presents a

visualization method for this correlation. We use the testbed tool and Java RMI to evaluate our

solution. According to our cost analysis, our solution is efficient and has good scalability. Due to the

abstract characteristic of our correlator, our solution is target-environment independent, eliminating

one of the major disadvantages suffered by the system of Sahai et al.

 iv

Acknowledgements

Thanks are given to persons who help me kindly on this thesis. First, I would like to thank Prof. Paul

Ward, my supervisor, for his supervision and guidance for the writing of this thesis. He provided lots

of valuable suggestions and comments. I would also be grateful of my readers, Prof. David Taylor

and Prof. Krzysztof Czarnecki, for their effort to read and comment on this thesis. My warm family

gives me courage and confidence to finish this thesis successfully. There are still a number of persons

who help me in my research work. Not mentioning their names does not mean that they are less

valuable. On the contrary, I provide my most sincere acknowledgement here to all of the people who

helped me.

 v

Contents
Chapter 1 Introduction .. 1

1.1 Motivation .. 2
1.2 Limitations of Existing Systems... 2
1.3 Contributions .. 3
1.4 Organization ... 4

Chapter 2 Background and Related Work .. 5
2.1 IBM Log and Trace Analyzer (LTA) ... 5

2.1.1 Event Data and Collection... 5
2.1.2 Event Visualization and Correlation.. 7
2.1.3 Limitations and Restrictions.. 7

2.2 Message Tracking in Web Services.. 10
2.2.1 Web Services and Messages.. 10
2.2.2 SOAP Message Tracking .. 10
2.2.3 Visualization.. 12
2.2.4 Drawbacks and Limitations... 13

2.3 POET.. 14
2.3.1 Event-based Model.. 14
2.3.2 Architecture of POET.. 16
2.3.3 Event Collection .. 17
2.3.4 Visualization and Analysis .. 21
2.3.5 Correlation in POET.. 22

Chapter 3 Event Correlation by Task .. 25
3.1 Event Correlation.. 25
3.2 Task Concept .. 26
3.3 Nested Tasks... 29
3.4 Event Correlation by Task.. 29

3.4.1 Basic Consideration for Instrumentation... 31
3.4.2 Propagation of Task Identifier... 32
3.4.3 Collection of Task Identifier ... 35
3.4.4 Task Identifier Mapping .. 37
3.4.5 Agreement on Task Data between Event Server and Target ... 38

3.5 Correlation Visualization.. 38
 vi

Chapter 4 Evaluation ... 40
4.1 Cost Analysis.. 40
4.2 Evaluation of Task Data Collection ... 41

4.2.1 Testbed Environment... 41
4.3 Java RMI Environment... 47

4.3.1 Instrumentation.. 48
4.3.2 Visualization.. 54
4.3.3 Results ... 54

4.4 Comparison with LTA.. 55
4.5 Comparison with the Approach of Sahai et al.. 56
4.6 Comparison with POET Abstraction.. 56

Chapter 5 Conclusions and Future Work .. 58
5.1 Future Work ... 58

Appendix A A SOAP Message Containing MDR.. 60
Appendix B A UEF-Formatted File .. 61
Appendix C Sample Testbed Scripts .. 63
Appendix D Java RMI Sample Codes .. 67
References ... 70

 vii

List of Figures

Figure 2.1: Layout of LTA ... 6
Figure 2.2: A Fragment of an Access Log Generated by an HTTP Server .. 8
Figure 2.3: A Fragment of an Error Log File Generated by the Same Server.. 8
Figure 2.4: Log View ... 9
Figure 2.5: Correlation by Time... 9
Figure 2.6: SOAP Messages Exchanged between Web Services [SMO+02] 12
Figure 2.7: An MDR Tree Representing a Web Services Transaction [SMO+02]............................... 12
Figure 2.8: A Complete Visualization View from the Initiator [SMO+02] .. 13
Figure 2.9: An Incomplete Visualization View from officesupplies.com [SMO+02] 14
Figure 2.10: The Architecture of POET ... 17
Figure 2.11: Event Streams in POET ... 18
Figure 2.12: Synchronous and Asynchronous Communication ... 22
Figure 2.13: A Non-Convex Event Set... 24
Figure 3.1: A Task in Web Browsing... 27
Figure 3.2: A Business Transaction in Web Services .. 27
Figure 3.3: A Chain of RPC/RMI... 28
Figure 3.4: A Nested Session in Web Browsing .. 30
Figure 3.5: A Nested Transaction in a Database .. 31
Figure 3.6: Tree Structure Representing Nested Tasks .. 32
Figure 3.7: Task Identifier Propagation amongst JVM Processes.. 33
Figure 3.8: Task Flow across Multi-tier Web System.. 33
Figure 3.9: The Structure of a Task Context .. 34
Figure 3.10: Popup Window for Selected Event .. 39
Figure 4.1: Testbed Environment of POET.. 41
Figure 4.2: Binary Events with Task Data ... 42
Figure 4.3: Unary Events with Task Data .. 42
Figure 4.4: Visualization of Script 1 .. 43
Figure 4.5: Display of an Event of the First Task .. 43
Figure 4.6: Display of an Event of the Second Task .. 44
Figure 4.7: Visualization of Script 2 .. 44
Figure 4.8: Display of an Event of the First Task .. 45

 viii

Figure 4.9: Display of an Event of the Second Task .. 45
Figure 4.10: Visualization of Script 3 .. 46
Figure 4.11: Display of an Event of the First Task .. 46
Figure 4.12: Display of an Event of the Second Task .. 47
Figure 4.13: Java RMI.. 48
Figure 4.14: A Composite RMI.. 48
Figure 4.15: The Infrastructure of Composite RMI Invocation ... 49
Figure 4.16: Thread Structure in Java RMI.. 50
Figure 4.17: Propagation of Task Identifier ... 54
Figure 4.18: The Visualization Result for the Sample Source Code.. 55
Figure 4.19: Display of a Positioned Event.. 55

 ix

List of Tables
Table 3.1: Coloring Matrix... 39

 x

Chapter 1
Introduction

A distributed system is composed of a number of loosely-coupled machines connected by some form

of communication medium. In a distributed system the machines do not share system resources

(memory, system clock, etc.). The entities in the distributed system interact by message passing. In

such systems, the behavior of entities and interaction between them is not easily understood by the

developer. The developer needs mechanisms to identify the behavior of the system, to enable

determination of faults, and to optimize performance.

A monitoring tool is useful for a developer to track and analyze the behavior of distributed systems. It

collects event data and provides functionality to analyze that data, such as visualization of events and

their relationships. While such a monitoring tool is useful, the large amount of event data in

distributed systems makes such analysis difficult.

Correlation is a widely used technique for event-data analysis. Event correlation is the process of

determining relationships between events in order to identify patterns of events. In other words, event

correlation is the process of finding related events according to some correlation criterion. It may help

a developer identify behavior patterns and thus reduce the complexity of analysis. Existing tools

provide various correlation mechanisms, such as “trace” in the Partial-Order Event Tracer (POET)

[KBT+97], and “transaction” in the message-tracking system of Sahai et al. (which we will henceforth

refer to as Sahai’s system) [SMO+ 02]. However, these systems do not solve the problem completely

since they have various limitations. For example, POET cannot capture such a relationship as

“transaction.” Conversely, Sahai’s system can capture the transaction relationship, but only in Web

Services, and does so inefficiently.

This thesis explores new ways to capture the transaction relationship efficiently and to remove the

target-system dependency. Due to the target-system independence of POET, we adopt it as our base

system to implement the new solution.

 1

1.1 Motivation

For distributed and parallel systems, isolated event data captured by monitoring tools, without well-

defined correlation, is of little value. Existing correlation solutions help the user identify patterns of

behavior and reduce the complexity presented to the user to some degree. However, the size and

complexity of existing systems is such that existing correlation solutions are insufficient. More-

sophisticated correlation solutions are needed for monitoring and analyzing such systems, and more-

efficient algorithms are needed for existing solutions.

Sahai et al. proposed a correlation scheme for message tracking in Web Services [SMO+02]. They

provided a correlation solution based on the “transaction” concept. Compared with correlation

mechanisms in other monitoring systems, their introduction of “transaction” solves some problems.

However, it has two limitations. First, their definition and implementation are closely tied to Web

Services. Second, their algorithm does not scale. We believe that “transaction” is a useful concept that

can be applied in many systems beside Web Services. It can be mapped to different correlation factors

in different systems. It can be used to correlate events across multiple target systems. The extension

and redefinition of “transaction” will remove the target dependence in the solution of Sahai et al.

1.2 Limitations of Existing Systems

We studied correlation features in several systems, including POET, Log and Trace Analyzer (LTA),

and Sahai’s system. POET has some correlation features, such as traces, send-receive pairing, and

automated abstraction. LTA [LTA Website] provides some correlation options, including URL,

application ID, and time. It can correlate events based on individual or combined options of these

criteria and on any user-defined criteria. The solution of Sahai et al. correlates SOAP messages by a

tree structure in SOAP messages [SMO+02].

However, these solutions have various limitations. LTA has limited correlation options, some of

which are non-deterministic. It does not define any generic correlator though one can be plugged in.

In particular, it does not have a “transaction” correlator. Furthermore, it does not present partial-order

information.

2

The scheme of Sahai et al. is not an efficient and scalable approach in terms of correlation data

collection. It does not scale well with respect to the number of messages per transaction. Its

application is also limited to the XML Web Services environment.

POET is a sophisticated monitoring system. It is independent of the target environment. However, it

lacks a correlation mechanism that can provide a snapshot of a “transaction” in distributed systems,

which Sahai et al. provided.

In summary, no existing monitoring system provides a complete and efficient solution for the

transaction correlation proposed by Sahai et al. To build a monitoring tool with such a correlation

mechanism, we must solve three major problems. They are

(1) Define a correlator which is target-system independent.

(2) Design an efficient and scalable collection mechanism for correlator information.

(3) Design a visualization mechanism for such correlation.

This thesis addresses these three problems, and provides a solution based on the existing POET

system.

1.3 Contributions

This thesis has four contributions:

(1) We define a generic correlator, “task.” The domain of our correlator is an abstract one which can

be mapped to various concrete domains for concrete systems. Thus the correlator we define is target-

system independent.

(2) A method of correlator collection is proposed to solve the problem of collecting correlation data

for large and complex target systems (e.g., multi-target systems). This approach includes an algorithm

for instrumenting the target system and for defining the mapping between external and internal task

identifiers in the event server of POET. Our approach is efficient, scalable, and flexible in terms of

correlator collection, which solves the problem of the solution of Sahai et al. Our approach does not

have significant additional cost.

3

(3) We implemented our solution within POET. Our tool has the functionality of collecting

correlation data and performing correlation visualization. Our solution has good interoperability and

backward compatibility. Any target system that works with the original POET needs no changes if

correlation data is not collected and only minor changes if it is collected. The additional cost is not

significant because we collect the correlator information with a small constant consumption of space

and bandwidth. Our solution provides a visualization scheme for correlation at the event level.

Because we adopt POET as our base visualization tool, our visualization is able to display the whole

partial-order of events as well as correlation information.

(4) According to the generic algorithm in (2), we instrumented Java RMI and evaluated the results.

1.4 Organization

The remainder of this thesis is composed of four parts. Chapter 2 presents our research background

and related work. In this chapter, we review three systems: LTA, Sahai’s system, and POET. In

particular, we discuss the correlation functionality of each of them. Chapter 3 presents the definition

of our correlator and our correlation solution within POET. In this chapter, we provide general

requirements and an algorithm for instrumentation as well as a method of correlation visualization in

POET. In Chapter 4, we evaluate our solution. We first analyze the costs of our solution. Then, two

target environments, the testbed tool and Java RMI, are used to evaluate our solution in a practical

sense. Finally, we compare our solution with existing correlation techniques discussed in Chapter 2.

In Chapter 5, we draw conclusions from our work and outline possible extensions.

4

Chapter 2
Background and Related Work

In this chapter, we give a brief introduction and review of three monitoring systems: IBM’s LTA,

Sahai’s system, and POET. In Section 2.1, we describe the log file and Common Base Event (CBE)

used in LTA. We focus on the visualization and correlation. In Section 2.2, we review the

mechanisms of correlator collection and visualization of Sahai’s system. In Section 2.3, the

architecture of POET, its mechanism for event collection, and features of its display are described,

since it forms the basis of our solution.

2.1 IBM Log and Trace Analyzer (LTA)

LTA is part of the Hyades project. It is an Eclipse-based monitoring system that monitors Java

programs as well as analyzing log files generated by various systems including IBM WebSphere

Application Server, IBM HTTP Server, IBM DB2 Universal Database, and Apache HTTP Server

[LogTrace Website].

LTA has two sub-systems: a logging tool and a profiling tool [LTA Documents]. The profiling tool is

the part that interacts with the instrumentation inside the target. The instrumentation in the target side

is called the profiling agent. This agent can collect run-time data from the target process and send

them to LTA for visualization and analysis. The logging tool is used to analyze various log files

generated by the targets. In this way, both log data and profile data can be visualized in LTA.

2.1.1 Event Data and Collection

Two types of event format are employed in LTA. One is the format of the original log record, the

other is CBE used inside LTA.

The original event data are stored in log files, and their formats and content vary from target to target.

Their generation depends on the target itself. For example, log records generated by an HTTP server

are different from those generated by the DB2 Database.

5

Figure 2.1: Layout of LTA

To solve the problem of the diversity of log file formats, the logging tool uses CBE to provide a

consistent view for various types of event records. CBE uses an XML-based format to describe

events. It defines the structure of an event in a consistent, common format [CBE Website]. Each CBE

record represents an event occurring in a target. It includes the event identification, the identification

of the reporting entity, the identification of the affected entity, associated message content, and

related data. CBE improves the flexibility and interoperability of event data. However, its drawback is

the problem of efficiency, since each CBE-format event is typically 1KB.

To convert various log formats to the CBE format, LTA needs a parser for each type of log. Such a

parser is implemented as a plug-in for LTA. This structure gives LTA some degree of flexibility to

deal with different event data generated by various targets. However, this parsing is another cost of

using CBE.

6

The logging tool obtains event data from log files generated by targets. Only when LTA executes the

import action is the log file containing event data read and converted to CBE format. The profiling

tool obtains event data from instrumented targets.

2.1.2 Event Visualization and Correlation

LTA presents several views for users. The log view gives a tabular format. The user can view the

information of any CBE event. The sequence-diagram view provides a graphic visualization for the

events in the log file(s).

The correlation plug-ins correlate events based on the rules specified by the plug-in. The rule is the

policy to order or group events according to the values of some property or properties of those events.

Existing correlations in LTA include correlation by time, correlation by URLs, and correlation by

application IDs. They can be categorized into two types, sequence correlation and associative

correlation [LTA Documents]. An example of sequence correlation is to order a set of events by time

stamp. Correlating the events with same thread ID is an example of associative correlation. We will

discuss these two correlations in Chapter 3.

Fragments from two log files are used to show the relationships between them. The records selected

contain multiple errors so as to demonstrate the correlation found by LTA between access and error

logs. The fragments are listed in Figure 2.2 and Figure 2.3. The log view and the result of correlation

by time are shown in Figures 2.4 and 2.5, respectively.

2.1.3 Limitations and Restrictions

LTA has two limitations. First, large CBE records increase the probe effect for the profiling tool. This

is the effect the collection of information imposes on the information being collected. Second, LTA

cannot collect partial-order information at present.

7

Figure 2.2: A Fragment of an Access Log Generated by an HTTP Server

......

[Wed Jan 15 10:41:00 2003] [error] [client 9.131.0.90] File does not

exist: c:/apache group/apache/htdocs/scripts/root.exe

[Wed Jan 15 10:41:01 2003] [error] [client 9.131.0.90] File does not

exist: c:/apache group/apache/htdocs/msadc/root.exe

[Wed Jan 15 10:41:02 2003] [error] [client 9.131.0.90] File does not

exist: c:/apache group/apache/htdocs/c/winnt/system32/cmd.exe

[Wed Jan 15 10:41:02 2003] [error] [client 9.131.0.90] File does not

exist: c:/apache group/apache/htdocs/d/winnt/system32/cmd.exe

......

......

9.131.0.90 - - [15/Jan/2003:10:41:00 -0500] "GET

/scripts/root.exe?/c+dir HTTP/1.0" 404 289

9.131.0.90 - - [15/Jan/2003:10:41:01 -0500] "GET

/MSADC/root.exe?/c+dir HTTP/1.0" 404 287

9.131.0.90 - - [15/Jan/2003:10:41:02 -0500] "GET

/c/winnt/system32/cmd.exe?/c+dir HTTP/1.0" 404 297

9.131.0.90 - - [15/Jan/2003:10:41:02 -0500] "GET

/d/winnt/system32/cmd.exe?/c+dir HTTP/1.0" 404 297

9.131.0.90 - - [15/Jan/2003:10:41:03 -0500] "GET

/scripts/..%255c../winnt/system32/cmd.exe?/c+dir HTTP/1.0" 404 311

9.131.0.90 - - [15/Jan/2003:10:41:03 -0500] "GET

/_vti_bin/..%255c../..%255c../..%255c../winnt/system32/cmd.exe?/c+dir

HTTP/1.0" 404 328

......

Figure 2.3: A Fragment of an Error Log File Generated by the Same Server

8

Figure 2.4: Log View

Figure 2.5: Correlation by Time

9

2.2 Message Tracking in Web Services

Sahai et al. propose a decentralized solution for message tracking in Web Services [SMO+02]. In their

solution, a correlation method based on transactions is introduced. Although their correlation

algorithm is specific to Web Services, the idea can be extended to a broader scope of targets.

2.2.1 Web Services and Messages

In the broad sense of the term, Web Services is a formatted message-based model for applications and

web sites to be interoperable with each other. In more technical terms, it is Remote Procedure Call

(RPC) where all involved parties agree on the exchange of standard-format messages, specifically

using XML-based syntax. Web Services are enabled by a set of standards and technologies. They are:

Simple Object Access Protocol (SOAP) [SOAP Website], Universal Description, Discovery, and

Integration (UDDI) [UDDI Website], and Web Services Description Language (WSDL) [WSDL

Website].

In Web Services, a complete computing service is often a composite one which comprises a set of

remote invocations via SOAP across heterogeneous platforms. It is helpful for the developer to track

the invocation path for a specific service.

2.2.2 SOAP Message Tracking

Sahai et al. use the idea of a transaction to represent a composite web service. Their concept of

transaction is different from the one in database systems. Rather it is a portion of business logic with a

clearly defined begin-point and end-point [SMO+02]. Their solution is to track the messages

belonging to the same transaction. In contrast to LTA, event collection in this solution depends on the

use of SOAP messages.

2.2.2.1 Message Data

In this solution, correlation data are collected during the interoperation of entities in various web

services. Such interoperation is accomplished by extra data flowing through the entities. The extra

data are in the form of a data structure called a Message Detail Record (MDR), which is shown

below. The parent-MDR field represents the transaction relationship. Appendix A gives an example

of a SOAP header containing an MDR [SMO+02].

10

MDR
{

 parent_mdr : message detail record of the parent message

 message_id : unique identifier of the message

 message_type : type of the message

 source : identifier of the service originating the message

 target : identifier of the service receiving the message

 time_sent : time when the message was sent by source

 time_recd : time when message was received by target

}

2.2.2.2 Message Tracking and Correlator Collection

In this solution, message tracking and correlation collection are fulfilled by building MDR trees in the

header of the SOAP message. When a message is being sent, a new MDR is created and inserted into

the appropriate child position of its context MDR. When a message is received, the MDR tree

contained in the SOAP header is extracted and merged with the MDR-Forest stored by the receiver.

A tree structure of MDRs (for the exchanged SOAP messages shown in Figure 2.6) is shown in

Figure 2.7. Each tree represents a web-services transaction. Each node in the tree represents a

message in the tracking path. A child node means the message occurs in the context of its parent

message. As we can see, message correlation is represented by the tree structure of the MDRs.

It is readily seen that the size of the tree grows with the length of the path of a transaction.

Accordingly, the size of the header of a SOAP message is a variable determined by the length of a

transaction. That is, the message-space complexity of this solution is O(N), where N is the path length

of the transaction.

11

wo

1: Purchase Order

2: Part of Purchase
Order

9: Order Confirmation

7:Shipping

2

E

o

o

supplies.

rkhard.com

10: Purchase Order
Confirmation

mar

Figure 2.6: S

MDR 2

MDR 4

MDR MDR 7

Figure 2.7: An M

.2.3 Visualization

ach entity in the target sy

nly the initiator has a com

f the messages and involv

8: Order Confirmation

Confirmation

6: Shipping
Confirmation

supplies.

ketplace.com

OAP Messages Exchanged bet

MD

MDR 3

9 MDR 8

MDR 1

DR Tree Representing a Web

stem has its own view of the m

plete view of messages and the

ed entities for the transaction

12

ween Web Services [SMO+02]

R 5

MDR 6

MDR 10

 Services Transaction [SMO+02]

essage tracking. For a specific tra

ir relationships. The initiator can d

. Figure 2.8 shows a complete vis
3: The Other Part of

Purchase Order
4: Shipping Request
5: Shipping Request
stationery.com
officesupplies.com
shipme.com
nsaction,

isplay all

ualization

view of the initiator of a transaction. Figure 2.9 shows an incomplete visualization view from the

intermediate node officesupplies.com in the transaction.

2.2.4 Drawbacks and Limitations

This approach provides a deterministic correlation solution based on the “transaction” concept, but it

has some limitations.

(1) It does not scale well with the growth of the number of messages per transaction. As we have

discussed in the previous section, the size of the SOAP message containing the MDR tree increases

through the transaction path. Its complexity is variable depending on the path of a transaction.

(2) The message tracking and collection is tightly bound to XML-formatted data. This reduces its

flexibility, interoperability, and portability. It does not have good target independence.

6

6

6

m

mark

Figure 2.8: A

supplies.
etplace.com

6

 Complete Visualization Vie

13

w

 from the Initiator [SMO+

PlaceOrder Avg:457.3 count:
workhard.co
6

officesupplies.com
stationery.com
02]
shipme.com
ConfirmBuyStationery Avg:1,018.67 count 6
 ConfirmBuySupplies Avg:552.5 count: 6
ConfirmShip Avg: 786.167 count: 6
BuyStationery Avg: 597.66 count: 6
 Ship Avg: 586.167 count:
ConfirmShip Avg: 786.167 count:
Ship Avg: 586.167 count:
BuySupplies Avg: 674.33 count:

6

2

P

U

d

b

fo

in

O

[A

s

2

T

a

m

fo

m

mark

Figure 2.9: An In

.3 POET

OET is a distributed de

niversity of Waterloo. P

istributed systems, showi

ehavior pattern of entities

r identifying faults, ano

dependent of any target

SF/DCE [OSF93], Herme

nd+88], PVM [GBD+94]

ystem).

.3.1 Event-based Mod

he target-system indepen

dopts the event-based ap

odeling of distributed co

cuses on the events which

u

supplies.
etplace.com

6

complete Visualization View fr

bugging and monitoring syst

OET can visualize the proc

ng the partial order of events

 and the interaction patterns be

malies, and performance prob

system, and thus has been used

s [SBL+91], Concert/C [YGS+8

, TCP Sockets, Java, and itsel

el

dence of POET is enabled by t

proach. This approach is on

mputation [War02], and was or

 trigger state transitions rather

14

om officesupplies.com [S

em developed by the Sh

ess-time diagram of var

. POET is a useful tool

tween entities (processes,

lems. One of its advant

 for a variety of environm

9], ABC++ [AOK+95], µ

f (since it is implemente

he concepts of “event” a

e of the techniques em

iginally developed by Lam

than focusing on the state
PlaceOrder Avg:432.33 co nt:
workhard.co
6
officesupplies.com
MO+0

oshin

ious p

 for s

 etc.).

ages i

ents

C++ [

d as a

nd “tra

ployed

port

 [War0
shipme.com
ConfirmShip Avg: 330.5 count: 6
Ship Avg: 250.167 count:
BuySupplies Avg: 452.33 count:
2]

 lab at the

arallel and

tudying the

It is helpful

s that it is

that include

BuS91], SR

 distributed

ce”. POET

 in formal

[Lam78]. It

2].

2.3.1.1 Event

An event is a transition from one state to another. Events are “atomic,” which means they take zero

time to occur. The concept of event is independent of any concrete system. Events can be instantiated

in a variety of concrete systems.

In monitoring systems adopting the event-based approach, the event types differ from target to target,

and depend on what information the user wants to capture. For example, an RPC call can mean two

events for two processes, one a send event, and the counterpart a receive event. However, an RPC

may have several pairs of events between two processes if we want to capture message interactions at

the TCP level.

From the point of view of the end user, the event is the unit that should visualized. However, the

display of a collection of isolated events is far from enough for the user. The pattern of relationships

between events is critical. The first obvious pattern is the order relationships. In distributed systems,

the partial order is the ordering relationship of events. Lamport’s happened before [Lam78]

determines the partial-order relationship in distributed systems. It is denoted by “→”. The rules of

happened before are

• If a and b stand for two events in the same process, and a occurs before b, then a→ b.

• If a is the sending point of a message and b is the receiving point of the same message by

another process, then a → b.

• If a → b and b → c, then a → c.

• Events a and b are concurrent if and only if neither “a → b” nor “b → a” is true.

2.3.1.2 Event Collection

In a monitoring system, a critical requirement is to collect the event data generated by the target.

Event data is collected by inserting small pieces of code that report to the monitoring system the

necessary event information. Such instrumentation code is inserted into the operating system, run-

time environment, communication library, or application code itself, as appropriate [See95]. Such

instrumentation varies from system to system. The concrete instances of events are target dependent.

15

The event may be low level, such as local system call. It may be a higher-level one, such as an HTTP

request or a SOAP action.

A problem of instrumentation is the probe effect. Instrumentation may perturb the ordering of events

in a program execution so that the collection of information can actually affect the information being

collected [See95]. POET minimizes this effect by collecting a minimal amount of information.

2.3.2 Architecture of POET

POET has a client/server architecture. The run-time architecture of POET is shown in Figure 2.10.

For a simple configuration, POET consists of an event-server process and two client processes: the

debug-session process and the checkpoint process.

The event server (also called disk server) interacts with both the monitored targets and various clients.

It is responsible for receiving, processing, and storing event data from the target application, and for

sending event data, on request, to its clients.

The debug-session process is the visualization part of POET. It is responsible for direct interaction

with the end user [KBT+97]. It can reside remotely as well as on the same machine as the event

server, which depends on the configuration of POET. Its major functionality is to obtain end-user

input via the keyboard and mouse and produce an appropriate display in response. This process

contains the algorithms for the debugger display, such as display scrolling, clustering, and event

abstraction.

The checkpoint process is an optimization to improve system performance.

The target programs are the monitored processes that have instrumentation to interact with the event

server. The instrumentation is responsible for generating event data and sending them to the event

server.

16

Target

Program

Target

Descr.

File

Check-point

Record

File

Raw

Event

Event Server

Debug

Session Target

Program

Target

Program

Checkpoint

Process

Figure 2.10: The Architecture of POET

2.3.3 Event Collection

The instrumentation inside targets sends raw event data to the POET event se

streams using the POET Event-Stream Protocol, as shown in Figure 2.11.

There are two types of events, normal events and text events, which are sent ov

normal event contains information about the event, as well as information about its

has one and if that information is known. The information in the event includes even

identification, event count (i.e., the event’s position, starting from 0, on a trace), a

The information of the partner event includes stream identification, trace identifi

count. A text event includes the text information of the immediately preceding no

same stream.

17
rver over TCP/IP

er this stream. A

partner event, if it

t type, local-trace

nd real-time data.

cation, and event

rmal event in the

l l

raw event data

Target

Program

Target

Program

Target

Program

Send-receive pa

instrumentation,

a send event occ

trace identifier,

instrumentation

operations are pe

2.3.3.1 UEF-Fo

The event server

is a sequential

independent [Ta

stream data, trac

file. In such a c

parses the event

the event data,
 TCP Stream

t

raw event data

i

t

u

o

r

r

A

y

e

a

d

t

TCP Stream

t

raw event data

Event Server

TCP Stream
Figure 2.11: Event Streams

ring and synchronous-event pairing are

he send-receive relationship of events is c

rs, the outgoing message will have data ap

and event count. When the correspond

btains these data from the incoming me

formed as described above.

matted File

may persistently store the event data in a

SCII file that is independent of differ

03]. A UEF-formatted file is composed

 data, and event data. The user can reloa

se, the reload program retrieves the eve

ata, and sends them to the event server th

he reload program sets up streams to t

18
requests
 in POET

 important re

aptured in the

pended to it s

ing receive e

ssage. For syn

UEF-formatted

ent versions

 of four majo

d event data s

nt data stored

rough the Eve

he event serv
event data
requests
 event data
TCP Stream
lationship

 following

uch as the

vent occu

chronous

 file. A U

of POET

r sections

tored in th

 in the UE

nt-Stream

er as used
Debug-session Clien
Debug-session Clien

TCP Stream
Event-Stream Protoco
 POET Client-Server Protoco
 •

•

•

s in POET. For

 way: At the time

 stream identifier,

rs, target-system

events, the same

EF-formatted file

and is platform-

: general header,

e UEF-formatted

F-formatted file,

Protocol. To send

 by the original

execution. Thus from the view of the event server, the reload program operation is indistinguishable

from the original execution.

2.3.3.2 Target-System Independence

POET provides target-system independence by means of a target-description file and an initial

pseudo-event.

The target-description file contains relevant characteristics of a specific target environment. It is

composed of a set of keywords and their values for the target and an event-description table that

describes the events in detail for a target environment. The keywords include the target identifier,

event-window title, and program-window title. The event-description table contains a sequence of

entries each of which provides the relevant information for an event type of a specific target. The

information for an event type includes index, partner-event type, and visualization characteristics

[KBT+97]. New keywords and values can be added to this file if new characteristics are needed to

describe a target. POET reads the target-description file and obtains the corresponding values at the

time the target-environment application sends an initial pseudo-event to it, indicating the target type.

Before the target program starts to send any normal event data to the event server, it first sends a

special event record, called event zero, to inform the event server of a new stream of event data. This

pseudo-event contains the target identification, event parameters of the stream, etc. This information

is used by the event server to process the event data over this stream properly. The data structure of

the initial pseudo-event is as shown below:

19

2

P

co

T

in

F

typedef struct {

 int magic_int; /* A constant integer to indicate the byte order;*/

 char magic_str[4]; /* A constant string to determine character code*/

 int target_id; /* The target identifier */

 int stream_len; /* The length of a stream identifier */

 int trace_len; /* The length of a trace identifier */

 int text_len; /* The length of a text string */

 unsigned flags; /* A flag field */

 char stream_id[1]; /* The stream identifier, the length is

 specified by stream_len */

} EVENT_ZERO;

.3.3.3 Event Collection APIs

OET provides a set of APIs for the instrumentation to facilitate event collection. There are three

mmonly used API functions: DBG_collect, DBG_both_collect, and DBG_text_collect.

he function DBG_collect is used to create and transmit a single normal event without text data. Its

terface is as below:

void DBG_collect(unsigned e_type, /* Event type of the generated event*/

void* e_trace, /* Trace identifier of the generated

 event*/

int e_evcnt, /* Event count of the generated

 event*/

void* p_stream, /* The stream identifier of partner

 event*/

void* p_trace, /* The trace identifier of partner event*/

int p_evcnt /* The event count of partner event*/

)

unction DBG_text_collect is used to collect only text events and it has the following interface:

20

Another function, DBG_both_collect, is used to collect event data and associated text data. It has the

following interface:

A

D

c

i

(

2

T

t

void DBG_both_collect (unsigned e_type, /* Event type for normal event*/

 void* e_trace, /* Trace identifier of the

 generated event*/

 int e_evcnt, /* Event count of the generated

 event*/

 void* p_stream, /* Stream identifier of the

 generated event*/

 void* p_trace, /* Trace identifier of partner

 event*/

 int p_evcnt, /* Event count of partner event*/

 unsigned text_e_type, /* Event type for text event*/

 char* e_name /* Text string*/

)
void DBG_text_collect(unsigned e_type, /* Event type */

 char* e_name /* Text string */

)

 call to the DBG_both_collect function is equivalent to a call to DBG_collect followed by a call to

BG_text_collect. The reason for using DBG_both_collect is to avoid interference between these two

alls from a different thread in a multi-threaded environment. Specifically, the text event must

mmediately follow the normal event for which it provides text data, or it will either be lost, or

worse) attach its text data to the wrong event.

.3.4 Visualization and Analysis

he POET visualization layout is composed of a number of horizontal lines, called traces, different

ypes of symbols on the lines, arrowed lines connecting the symbols, etc. A horizontal line represents

21

a sequential entity (process, thread, etc.). A symbol on the line denotes an event belonging to the

entity represented by that line. The symbol shapes used to represent events in a target environment are

defined in the corresponding target-description file. An arrowed line connecting two symbols shows

the interaction (communication) between them. Two types of arrowed line are used to represent

synchronous and asynchronous communication. Figure 2.12 shows these two types of

communication. For synchronous communication, two events are connected by a vertical arrowed

line. For asynchronous communication, two events are connected by a sloping arrowed line.

POET also provides the functionality of displaying detailed information for an event and the partial

order of events. By positioning the cursor on an event and clicking the middle mouse button, the user

can see a small display field appearing beside the event. That field shows such information as the type

of the event, the name of the trace the event is on, the sequence number of the event within that trace,

and the text string, if it exists. In addition, the events that are predecessors of this event and the ones

that are successors will be colored differently. By default, all the predecessors are colored red and all

the successors are colored green. Other events (including the selected event) remain uncolored.

Figure 2.12: Synchronous and

2.3.5 Correlation in POET

Various correlation mechanisms exist in POET. I

receive and synchronous-event pairs, as well a

predicate detection.

 Asynchronous Communication

n particular, it correlates events in traces, and send-

s allowing abstraction, real-time correlation, and

22

A trace is a horizontal line in the visualization. In different target environments, it may represent

different entities. It can be a process, a thread, a mutex, or any sequential entity. For an event, this

trace information is a form of correlation. All of the events with the same trace identifier will be

visualized on the line representing the trace.

Send-receive pairing and synchronous-event pairing are self-evident forms of correlation. They

identify the send-receive and synchronous-event relationships between events, respectively. Such

correlations are helpful to identify the interacting pairs of events in communication environments.

Abstraction is an important technique that reduces display complexity by skipping undesired

visualization detail. In POET, there are two types of abstraction: event abstraction and trace

abstraction. Event abstraction is the process of grouping multiple events into a single abstract event

based on certain rules. Similarly, trace abstraction is a technique that groups a set of traces into a

cluster. However, these abstractions have some restrictions. For event abstraction, the event set to be

abstracted must satisfy the convexity constraint. This constraint states that there is no event outside

the convex set that happens before some event in the set while some other event in the set happens

before it. Convex abstract events keep the atomicity property of primitive events. However, this is

obtained at the expense of plausible abstract events. Figure 2.13 illustrates a plausible, but non-

convex, abstract event. The events enclosed by the dashed curve may belong to a correlated set of

events. However, they cannot be grouped into an abstract event because the set does not satisfy the

convexity constraint. The limitation of trace abstraction is that it cannot correlate events across parts

of different traces.

Predicate detection is a search mechanism that finds the event set matching predefined constraints

(predicates), especially those specifying causality relations [Xie04]. Hierarchical predicate detection

requires automated event abstraction, typically requiring the event set to be convex.

23

• •

Client 1
• • • •
Server 1
• • • •
Server 2
• • •• •
Server 3
• •
Client 2

Figure 2.13: A Non-Convex Event Set

24

Chapter 3
Event Correlation by Task

In this chapter, we will explain the task concept and describe our correlation solution within POET.

We introduce the general concepts of event correlation in Section 3.1, including correlator, domain,

and categorization. In Section 3.2, we propose our correlator, “task,” and give examples of mapping

from it to some concrete correlators. We compare event correlation and abstraction in Section 3.3. We

describe our correlation solution in detail in Section 3.4.

3.1 Event Correlation

A correlator is a function that maps events into sets. As such it must have a well-defined domain. For

example, the correlator “URL” can be used in the HTTP domain. A domain may be concrete or

abstract. An abstract domain is generic and can be mapped to any concrete domain. For example, in

POET, the trace is a generic correlator existing in an abstract domain that can be mapped to different

concrete domains, such as process, socket, or object.

In this thesis, we adopt the categorization criteria of correlation in LTA. The correlation is classified

into two types: sequential and associative.

(1) Sequential correlation orders a set of events by using a specific correlator and/or rules to put them

in some sequence according to the order of correlator values. The obvious example is to order events

by real-time timestamp.

(2) Associative correlation clusters events by using some correlator (or correlators) and/or rules. An

example is the “trace” in POET. A trace is a group that associates all events in the same sequential

entity. Correlating events based on URL or application ID in LTA are other examples of such

correlation.

Two factors affect the efficiency and effectiveness of a correlator. These factors are the degree of

independence from the target and the cost of collection.

 25

The degree of independence determines the adaptability of the correlation. For example, “trace” in

POET is independent of any target. It can therefore be mapped to various entities (process, thread,

object, TCP socket, etc.). By contrast, “transaction” is bound to Web Services in Sahai’s system,

which narrows its application for other targets. The characteristics of the correlator domain determine

the degree of independence. An abstract domain enables a correlator to have a high degree of

independence.

The efficiency of correlator collection determines the efficiency of correlation. For example, the

correlator collection in the approach of Sahai et al. is not efficient.

3.2 Task Concept

An important concept in many aspects of distributed systems is “task.” A task is a set of operations or

actions that fulfill a specific computing purpose. It is an abstract concept that is meaningful for

different distributed systems, including Web Services, distributed databases, RMI/RPC, CORBA,

shared-memory systems, and parallel computing systems. In these distributed and parallel systems the

computing entities may interoperate with each other to fulfill some specific computing purpose. We

use “task” to refer to that purpose.

There are various instances for this concept of task. We give some examples to explain it in detail.

In web browsing, an instance of task might be viewing a web page. Such a task can be defined as the

procedure of getting all of the objects (text, image, Java script, etc.) to display a complete web page.

Thus, one web page display may contain multiple HTTP requests and responses. Figure 3.1 shows a

task in web browsing. In Figure 3.1, four actions occur to complete browsing a web page (i.e., web-

page A).

In Web Services, the task concept can be mapped to a business transaction. In such a context, a task

refers to a set of invocations based on SOAP messages to fulfill a business-computing service. For

example, a user purchases an item in an online store, called E-Store.com, as shown in Figure 3.2. This

26

Web Server

 Web Page A

 Image1

A

Figure 3.1: A Task in Web Browsing

Fi

service transaction compris

to the corresponding online

payment transfer from

Shipment.com, to do the sh

of events occur in different

messages and events from

and events corresponding

messages associated with

identify any defects or bott

E-Store.com

gure 3.2: A Business Transaction in Web Service

es the subsequent set of SOAP-based invocations

 bank, E-Bank.com, which checks the user’s ba

the user’s account. The e-store then order

ipment. In this transaction, a set of messages is

 processes. These events and messages may occu

other transactions. Without correlation, it is hard

to this specific service for this specific user. Co

this service can help the developer find the pa

lenecks in the whole procedure.

27

Shipment.com
Payment Order
Payment Confirmation
Shipment Order
Shipment Confirmation
Purchase Order
Payment Confirmation

X-Client

E-Bank.com
GET Web Page
GET Image1
Browser
HTTP OK
HTTP OK
s

: the store sends an order

nk information and gets a

s a shipping company,

transmitted and a number

r concurrently with other

 to identify the messages

rrelating these events and

th of the invocation and

I

t

I

c

“

t

v

i

b

B

m

c

o

Client:

 SomeProcedure
{
......
Call RemoteP1
......
}

Fig

n distributed database systems, the

ransaction is usually issued to the da

Begin the transaction

Execute a sequence of SQL act

Commit the transaction.

n RPC/RMI there may exist chains

all other procedures, as shown in F

composite RMI” as appropriate. Suc

ask concept can be mapped to the c

ery helpful for the developer of RPC

n a RPC call or RMI invocation. C

ottleneck or other problems in the co

ased on the previous analysis, tas

apped to specific operations in d

haracteristic makes it applicable to

peration of distributed systems than
Server 1:

 RemoteP1
{
......
Call RemoteP2
......
}

ure 3.3: A Chain of RPC/RMI

task concept can be mapped to an A

tabase system in SQL in this form:

ions (select, insert, update, delete, etc

of calls or invocations. That is, a ca

igure 3.3. We refer to such chains

h calls or invocations fulfill a specif

hain of calls or invocations in RPC

/RMI-based programs. It can identi

onsequently it helps a developer de

mplete operation of the composite R

k is a generic and abstract concept

ifferent systems. It is independent

 various target systems and it more

does the simple collection of raw eve

28
 RemoteP2

Server 2:

{
......
......
}

CID transaction. A simple

.)

lled remote procedure may

as a “composite RPC” or a

ic computing task. Thus our

/RMI. Such a correlation is

fy all of the events involved

termine whether there is a

PC call or RMI invocation.

 of correlation that can be

of any target system. This

 closely reflects the natural

nts.

3.3 Nested Tasks

It can be useful to consider that there are sub-tasks or child tasks, occurring in the context of a parent

task. Nested tasks are then needed to represent the relationship between task instances.

An example of nested tasks is a composite session in web browsing (e.g., purchasing items on-line).

Such a browsing session may comprise multiple web pages. Figure 3.4 shows a nested web-browsing

session. The task is the complete session that comprises multiple web-page displays, while the sub-

tasks are the display of the web pages in this session.

Another example use of nested tasks is nested transactions in a database, as shown in Figure 3.5. In

this example an outer transaction contains an inner sub-transaction. The outer transaction might be

viewed as a task, and the inner sub-transaction, its sub-task.

The nesting relationship between tasks can be represented using a tree structure. For each task record,

a field indicates its parent task. Thus, a tree comprising the parent-child relationship can be built to

represent nested tasks, as shown in Figure 3.6. This approach allows us to maintain a fixed overhead

when collecting task data. Nested tasks are not investigated further in this thesis.

3.4 Event Correlation by Task

We design a correlation solution based on the “task” concept on top of POET. We choose POET as

our base system because our correlation solution needs a target-independent platform. To enable our

correlation to function within POET, the target, the event server, and the debug-session client must

interoperate in regard to correlator data. The “task identifier,” uniquely identifying any given task in a

monitored environment, is the correlator data in our solution. Targets need to generate task identifiers

and propagate them to each other in addition to sending them to the POET event server. The POET

event server needs to process task identifiers from the target and send them to the debug-session

client on request. The debug-session client needs to have a visualization method to display those task

data received from the event server.

29

 Browser

Web Server

 Web Page A

1

HTTP Request 1

 link

 HTTP Reply 1

2
 HTTP Request 2

Web Server

Web Server

 Web Page B

 link

3
HTTP Request 3
 HTTP Reply 2
Sub-Task
Sub-Task
Sub-Task

HTTP Reply 3
Task
 Web Page

C

Figure 3.4: A Nested Session in Web Browsing

30

Task

Begin the transaction

Execute a sequence of SQL actions (select, insert, update, delete etc.)

Begin a new transaction

Execute a sequence of SQL actions

Commit the new transaction

Execute a sequence of SQL actions

Commit the transaction

Sub-Task

Figure 3.5: A Nested Transaction in a Database

3.4.1 Basic Consideration for Instrumentation

While the instrumentation will vary for different target environments, it should follow some generic

requirements. In this section, we describe the basic requirements for multi-process and multi-thread

environments communicating by message passing. In such environments, a process may handle

multiple tasks concurrently. The general requirements for instrumentation then include the following.

(1) The instrumentation must clearly define its task concept. That is, the instrumentation should map

the “task” concept to the desired concrete instance (ACID transaction, composite RPC/RMI, etc.).

(2) The task identifier needs to be globally unique across all threads and processes. Task identifiers

may need to propagate across multiple processes and/or threads. To prevent conflict between task

identifiers, it is necessary to keep the uniqueness of task identifier. A Universal Unique IDentifier

(UUID) [OSF93] or Globally Unique IDentifier (GUID) [EdE98] may be used in some targets. While

a UUID or GUID (a 128-bit number) is typically enough to guarantee the uniqueness, we do not

presuppose that the correlator is always a 128-bit number.

31

task ID no parent

task ID parent ID task ID parent ID task ID parent ID

task ID parent ID task ID parent ID
•
 •

(

i

m

(

t

d

a

p

C

3

T

c

J

a

 •
3)

f

u

4)

ar

if

rc

ro

u

.4

h

o

V

m

 •

Figure 3.6: Tree Structure Representing Nested Tasks

 In addition to being unique, the identifier must have the same length across vario

tasks are to be correlated across those systems. Thus, POET and the target-system

st agree on the length of task identifiers.

 The task identifier needs to propagate across multiple processes that may be

get environments. The instrumented environment may be of multiple processes th

ferent target environments. For example, enterprise-level web application system

hitecture. To capture the task data in such an environment, the task identifier sho

pagated across the heterogeneous platforms (web server, application server, data

rrently, POET cannot handle multiple targets simultaneously.

.2 Propagation of Task Identifier

e task identifier needs to be propagated to any event of the task. Consider

mposite RMI in Java, as discussed in Section 3.2. Such a composite RMI invo

M processes, as shown in Figure 3.7. The task identifier of this composite RMI n

ong these JVM processes.

32
•
u

 p

a

s h

u

ba

the

lv

ee
 •
s t

in

ar

t m

av

ld

se

es

ds
 •
ar

str

t

a

e

 b

 s

ex

 a

 t
 •
•
•
 •
get systems

umentation

of different

y be part of

 a multi-tier

e able to be

erver, etc.).

ample of a

 number of

o propagate

Task Identifier

• • • • • •

Remote Call Remote Call

Task Identifier Task Identifier

RMI

Server

RMI

Server

JVM

RMI

Client

Remote Call

Figure 3.7: Task Identifier Propagation amongst JVM Processes

 Web Server

Task Identifier

in HTTP

Application Server

Task Identifier

in DB connection

Task Identifier

in Remote Call

Database

Server Client

Figure 3.8: Task Flow across Multi-tier Web System

A more-complex example is a multi-tier web-application system. A task may include a chain of

events occurring in a web server, application server, and database server, as shown in Figure 3.8. In

this example the situation is more complex. The task identifier may be transferred by different

transport mechanisms in different layers.

The instrumentation has to associate each event with its appropriate task, and must consider two

aspects, inter-process communication (i.e., message passing) and concurrency inside a process. The

reason is that events occur in the context of both inter-process communication and concurrency. The

combination of concurrency and multiple communication channels makes it difficult to associate

events occurring in such an environment with appropriate tasks. To solve this problem, we introduce

the “task context” concept, which stands for the current task context under which an event occurs.

Figure 3.9 shows the structure of a task context.

33

 • • • • • • • Task Identifier Identifier of a Computing Entity (e.g., Thread)

Figure 3.9: The Structure of a Task Context

Since there may be multiple tasks simultaneously active in a target process, the instrumentation must

properly switch task contexts for an expected event. This can be fulfilled by attaching a task tag,

showing the task context for each thread, to each thread.

In Section 2.3.3, we introduced the method which our instrumentation uses to capture the send-

receive relationship. For POET, instrumentation should solve the problem of passing the task

identifier through send-receive pairing. Our algorithm is applied to four types of events: transmit,

receive, unary, and synchronous. A unary event occurs without any message passing. A transmit

event is a sending of a message. A receive event is a receiving of a message. A synchronous event is a

pair of sending and receiving of a message in the form of synchronous communication.

In our algorithm, we use 0 as a special value to indicate “no task.” Our algorithm is as follows.

(1) When a unary event occurs, the instrumentation simply obtains its task context (i.e., task tag) by

referencing the identifier of the thread where this event occurs.

(2) When a transmit event occurs, the instrumentation will check the task status. If the thread is

dedicated to a task, the instrumentation obtains the task identifier from the task context (i.e., task tag).

If the thread is an initiator of a new task, the instrumentation generates a new task context with a new

task identifier for this thread. The transmit event corresponds to a transmission operation. The

instrumentation appends the task identifier as well as the stream identifier, the trace identifier, and the

event count in the trace (the original instrumentation in POET) to the end of the outgoing message.

(3) A receive event occurs when a message arrives. Instrumentation determines whether it must

initiate a new task or accept the received task identifier. In the first case, the instrumentation will take

the same action as (2); otherwise, it extracts the task identifier from the message. If the task identifier

34

is 0, the instrumentation determines that no task data is associated with this message and processes

this event in the manner of one without any task identifier. If the incoming task identifier is not 0, the

instrumentation will set the task tag of the thread to the incoming task identifier and save the old one

in the case that the incoming task identifier is different from the current one.

(4) When a synchronous event occurs, the operations the instrumentation performs are similar to

those on a pair of transmit and receive events except that the receive end simply accepts the received

task identifier since it is presumed that the two end points should have a close task relationship based

on the consideration that it is not a pair of events but a single event.

3.4.3 Collection of Task Identifier

As discussed in Section 2.3.3, the instrumentation collects event data through the POET Event-

Stream Protocol. We modify this protocol in our solution by adding a new field to the normal event

data structure. This field contains the task identifier that uniquely identifies the task associated with

that event. The type of this field is a variable of type void to be adapted to various data types of

targets. In our solution, we do not specify the length of task data. Our APIs can be adapted to task

identifiers of arbitrary length. The agreement on the length of task identifier between target and event

server will be discussed later.

Considered together with the discussion in the previous section, the algorithm of task-identifier

collection is as follows. When an event occurs,

(1) If the instrumentation determines the event is associated with an existing task or that a new task

needs to be created, it puts that task identifier in the event stream and sends it to event server.

(2) If the instrumentation determines that this event does not belong to any task, it puts the special

value (i.e., 0) in the event stream to indicate no task data.

To facilitate the collection of task data, we modified the original DBG_collect and DBG_both_collect

interfaces of POET that were introduced in Section 2.3.3.3. The new functions have very similar

interfaces that can be easily used by the original users.

35

The first library function is used to collect a normal event with task data but without text information.

Its modified interface is shown below. The only change we made is to add an argument task_ID, of

type void*, to the original interface. The target-system instrumenter can use this function to collect an

event associated with a task identifier. If an event has no task identifier, the special value will be

collected (i.e., the task identifier is set to 0, or in other words a pointer to 0 is passed to the function.).

This function can also be used by the original instrumenter to collect an event without a task identifier

since the argument, task_ID, can be compiled optionally by the preprocessor. The length of the task

identifier is defined in the header file, usr_debug.h, which is included by the file in which these

functions are located.

void DBG_collect(unsigned e_type, /* Event type of the generated

 event*/

 void* e_trace, /* Trace Identifier of the

 generated event*/

 int e_evcnt, /* Event count of the

 generated event*/

 void* p_stream, /* The stream identifier of

 partner event*/

 void* p_trace, /* The trace identifier of

 partner event*/

 int p_evcnt /* The event count of partner

 event*/

#ifdef TASK

, void* task_ID /* The task identifier of the

 generated event*/

#endif

)

The second library function is used to collect a complete event with text information and task data.

The modified interface is shown below:

36

3

I

i

m

t

s

c

I

i

t

i

t

void DBG_both_collect(unsigned e_type, /* Event type for normal event*/

 void* e_trace, /* Trace identifier of the

 generated event*/

 int e_evcnt, /* Event count of the generated

 event*/

 void* p_stream, /* Stream identifier of the

 generated event*/

 void* p_trace, /* Trace identifier of partner

 event*/
 int p_evcnt, /* Event count of partner event*/

#ifdef TASK

 void* task_ID, /* The task identifier of the

 generated event */

#endif

 unsigned text_e_type, /* Event type for text event*/

 char* e_name /* Text string*/

)
.4.4 Task Identifier Mapping

nside the event server, we implement an optimization for processing task data, which transforms task

dentifiers from their target length to a shorter internal identifier. There are two reasons for this

apping. A task identifier from the target is long (e.g., 128 bits). The display of such an identifier in

he debug-session client is neither necessary nor desirable for the user. The other reason is that using

uch an identifier causes unnecessary time and space cost for the event server and the debug-session

lient.

n our solution, we use a mapping table for each POET session to transform target task identifiers to

nternal ones. Each time the event server receives a task identifier from the event stream, it looks

hrough the mapping table for the internal identifier for that task identifier. If no matching task

dentifier is found in the table, the event server creates a new entry by assigning a new integer for this

ask identifier. The event server uses integer “0” to represent “no task.”

37

When POET persistently saves the event data to a UEF-formatted file, it stores the task identifier by

using the internal format, “integer identifier.” When POET restores the event data by reloading the

UEF-formatted file, it simply retrieves the integer task-identifier, pads with zero bits if the length of a

target task-identifier is larger than the length of an integer, and then sends it to the POET event

server.

3.4.5 Agreement on Task Data between Event Server and Target

The agreement on task data between the event server and the target includes two aspects: First, the

length of the task identifier is specified in a header file, “usr_debug.h,” which is included by both the

target-description file and the instrumentation program at compile time. Second, the event server

determines the existence of the real task identifier for each event based on this value, with the special

value “0” representing a void task identifier (i.e., no task data). We did not specify the length of the

task identifier in event zero because the version of POET we used does not use enhanced event zero.

3.5 Correlation Visualization

We adopt the POET visualization because our solution is built on top of POET. However, we use a

different visualization method for task correlation from that for abstraction. In event abstraction, a set

of events is clustered into one abstract event that can be viewed as an atomic event. This form of

display is enabled by the convexity property of abstract events, which is not present in our solution.

Instead, we combine coloring and textual display to visualize task information. We use the

functionality of the middle mouse button in POET. While keeping the basic features, we add

coloration of events with the same task identifier and indicate that task identifier in the popup

window.

When a popup box appears, a new field, an asterisk followed by a number (which is the mapped task

identifier for the event), showing the task information will follow the trace name and event sequence

number, as shown in Figure 3.11. For those events without any associated task (i.e., task identifier is

0), no task identifier is shown, which is same as the original behavior of POET.

38

The coloring for events in different tasks maintains the original coloring scheme. Events within the

same task are colored according to their precedence relationship to the event being clicked. A

summary of the default coloring of our solution is shown in Table 3.1. The colors in Table 3.1 can be

modified by using the POET resource file.

Figure 3.10: Popup Wind

Predecessor Light G

Successor Dark G

Concurrent Blu

p

Trace 5

Trace 1 •

Trace 3

Trace 4

•

•

• •

• •

•

•

•

• •

•

•Trace 2

Table 3.1: Colo

39
sync send [Tr_2, # 4, * 1]
ow for Selected Event

•

•

•

•

• •

•
Correlation

Relationship

 Partial-Order Relationshi

Same Task
reen

reen

e

ring Matrix

Different Task
Red

Green

No color

Chapter 4
Evaluation

In this chapter we analyze the costs of our solution, examine its use in some test environments, and

compare it with existing solutions.

4.1 Cost Analysis

In our solution, extra costs are incurred since extra correlation data is collected. These costs include

computing costs, communication costs, and storage costs.

On the target-system side, there will be an O(1) cost for each new task. For each event, if the task

identifier is required, there is an O(1) cost when it is copied. On the event-server side, the processing

cost for the transformation of task identifiers is O(N), where N is the number of tasks. This cost can

be reduced to O(1) amortized by the hashing method in which each task identifier from the target is

hashed to a value, which is used as the index of the internal task identifier. On the debug-session side,

the cost is O(1) for processing the task identifier for each event.

The increased communication costs include three parts. The communication cost from the target side

to the event-server side increases by Vt bits per event, where Vt is the length of a task identifier

generated by the target. Similarly, the communication cost of passing task data between targets

increases by Vt bits. The communication cost from the event-server side to the debug-session client

side, however, is more complex to analyze, since event data is transported to the client in discrete

blocks of multiple events. With task data present, there will be fewer events per block, but the block

size remains the same. The effect is that for sequential access, ignoring block-header-size overhead,

the cost increases by 4 bytes per event on average. For random-access, however, the communication-

cost may not increase, but could double in the worst case. Specifically, when a set of consecutive

events being accessed continues to fit into a single block, the cost does not change. If, on the other

hand, the shift in the position of block boundaries causes a small set of events formerly in a single

block to cross a block boundary, two blocks will need to be fetched rather than a single block,

doubling the cost.

 40

Debug-session Process

Event

Server
Testbed Process

)

Figure 4.1: Testbed Environm

As discussed in Chapter 2, POET may persistently store t

file. With the task-identifier data, a UEF-formatted file co

Because the event server transforms the task identifier from

the length of the task identifier is reduced. Consequently, t

file is small for each event entry. For example, an integer

number of bytes. Compared with the length of target-genera

persistent storage is reduced for each UEF-formatted file.

integer task identifiers is shown in Appendix B.

4.2 Evaluation of Task Data Collection

To test the feasibility and efficiency of our approach, we us

POET server, and then display it with the debug-session pro

4.2.1 Testbed Environment

The testbed tool interacts with the end user or reads input

and DBG_collect_both API functions to send these events t

By using testbed, the user can create virtually arbitrary

debugger.

41
Raw Events
l
Event-Stream Protoco
POET Client-server Protocol
DBG_collect()
 DBG_collect_both(
ent

he

nta

 ta

he

in

ted

An

e th

ces

fro

o th

disp
Events

Testbed Commands
 of POET

event file on disk as a UEF-formatted

ins an additional field for each event.

rget-specific format to an internal one,

extra storage cost for a UEF-formatted

a UEF-formatted file occupies a small

 task identifiers, typically 32 bytes, the

example of a UEF-formatted file with

e testbed tool to send event data to the

s.

m a script file, using the DBG_collect

e event server, as shown in Figure 4.1.

lays for testing various facets of the

4.2.1.1 Syntax of Testbed

We made some modifications to the original testbed program, which enables it to generate task data.

We implement two new commands in testbed. The new commands are shown in Figures 4.2 and 4.3.

trace_number trace_number t: task_identifier

Figure 4.2: Binary Events with Task Data

trace_number t: task_identifier

Figure 4.3: Unary Events with Task Data

The identifier following the “t:” is associated with the event(s) as the task identifier. If there is no “t:”

in the line (i.e., the original commands), it is presumed that the event has no associated task ID. Three

sample scripts for our modified testbed program are shown in Appendix C.

4.2.1.2 Results

We use three scripts to test our solution. The first one tests simple synchronous events. The second

tests simple asynchronous events. The third one tests the visualization of an event set that is not

convex. In these displays, various shades of gray are used to visualize the task information of events.

The events enclosed in a dashed curve belong to the same task. The dashed curve and the associated

text are not parts of our visualization. They are used to enable the reader to more easily understand

the diagram.

In the first test, there are two tasks. The events belonging to them form two sets. The remaining

events, without task identifiers, belong to no task. Figure 4.4 shows the visualization of this script. In

this visualization, we select two events to display the task information. The displays for these events

are shown in Figures 4.5 and 4.6.

42

Figure 4.4: Visualization of Script 1

Figure 4.5: Display of an Event of the Fir

43
Task 1

st Task

Figure 4.6: Display of an Event of

In the second test, there are two tasks. Figure 4.7 shows t

and 4.9 show two events with task information.

Figure 4.7: Visualization o

44
Task 2

 the Second Task

he visualization of this script. Figures 4.8

f Script 2

Figure 4.8: Display of an Event of th

Figure 4.9: Display of an Event of the

In the third test, we see that our correlation is not constrain

visualization of script 3, which is listed in Appendix C. Figure

events that belong to two different tasks. The events belonging

because the event set is not convex.

45
Task 1

e First Task

Task 2

Second Task

ed to be convex. Figure 4.10 is the

s 4.11 and 4.12 show two positioned

 to the first task cannot be abstracted

Figure 4.10: Visualization of Script 3

Figure 4.11: Display of an Event of the Fi

46
Task 1

rst Task

Figure 4.12: Display of an Event of t

4.3 Java RMI Environment

Java RMI enables programmers to invoke methods on remo

Machines [RMI Website]. Fundamental to RMI is the obje

between the client and server. The stub and skeleton act as pr

other to transmit the parameters and return value. The architec

In Section 3.2, we discussed the mapping of “task” in the Ja

RMI may refer to a chain of invocations. All of the invocatio

computing purpose initiated by the first RMI client. An exa

shown in Figure 4.14.

In a composite RMI, the intermediate RMI server acts as both

it receives the invocation request from the client. On the oth

remote object. The intermediate RMIs and execution at the f

but in the context of the initial RMI. Figure 4.15 shows the inf

47
Task 2

he Second Task

te objects residing in other Java Virtual

ct serialization to transmit parameters

oxy objects that communicate with each

ture of RMI is shown in Figure 4.13.

va RMI environment. That is, a task in

ns in this chain implement the original

mple of a composite-RMI invocation is

 a client and a server. On the one hand,

er hand, it invokes a method on another

inal server do not occur independently,

rastructure of the composite RMI.

RMI is a

daemon

RMI req

daemon

in Figure

4.3.1 In

To instru

thread in

RMI Client

Application

RMI Server

 l l

RMI

Marshal

Figure 4.13: Java RMI

 multi-threaded environment. The threads in RMI can b

threads and the service threads. The daemon thread is resp

uest and dispatching it to a spawned service thread. A

thread to fulfill the concrete computing for an RMI request

 4.16.

strumentation

ment Java RMI, we capture the events at the thread leve

 our implementation. Our instrumentation captures the follo

JVM

Stub

 RMI Server

1
RMI Client

Figure 4.14: A Composite RMI

48
Marshal
Un-marsha
e categorize

onsible for r

service thre

. Such a thre

l. Therefore

wing types

 Skele

JVM

R

R

Un-marsha
Transferring of Marshaled Data

ton

Transport Channel
d into two types: the

eceiving an incoming

ad is created by the

ad structure is shown

, a trace represents a

of events:

MI Server

2
RMI

RMI
MI Server
RMI
3

Figure 4.15: The Infrastructure of Composite RMI Invocation

• RMI Trace Start: a daemon thread or an RMI client thread starts.

• RMI Trace Create: a daemon thread spawns a service thread.

• RMI Trace Spawned: a new service thread is spawned in response to an RMI.

• RMI Invocation: an RMI client invokes a remote call.

• RMI Request: an RMI server receives an RMI call request.

• RMI Reply: an RMI server replies to an RMI call request.

• RMI Return: an RMI client receives the return values of an RMI call if the return

 type is not void.

• RMI Served: an RMI server finishes an invocation service without a return value (i.e., the

 return type is void for an RMI call). There is no synchronization between the RMI

 client and the RMI server when the return type is void for an RMI call.

Since the “Exit” event is not in our research scope, we do not collect it. In our instrumentation, the

event types are defined in a class called EventType that is shown below:

Java
Application

RMI Stub

JVM

Java RMI Server 1

Skeleton RMI Stub

JVM JVM

RMI Skeleton

Java RMI Server
2
public class EventType{

 public final static int RMI_TRACE_CREATE = 1;

 public final static int RMI_TRACE_SPAWNED = 2;

 public final static int RMI_INVOKE = 3;
49

4.3.1.1

Event

server
 public final static int RMI_REQUEST = 4;

 public final static int RMI_REPLY = 5;

 public final static int RMI_RETURN = 6;

 public final static int RMI_SERVED = 7;

 public final static int RMI_TRACE_START = 8;

}

s

Service

Thread
RMI Requests
Daemon

Thread

Service s

Fig

 Event Collection

collection has two parts: o

side, the instrumentation i
Spawn and Dispatch

Service

Thread

Thread

ure 4.16: Thread Structure in Jav

ne is on the RMI server and the

s inserted into the skeleton; on th

50
Marshal the Returns/Parameter
s
Marshal the Returns/Parameter
Marshal the Returns/Parameter
a RMI

 other is on the RMI client. On the

e client side, the instrumentation is

inserted into the stub. Both of them use a set of Java functions implemented by a class called Collect.

The interfaces of the collection functions are the same as in the C collect functions, modified for the

Java type system. The static method collect_init() is used to collect event zero.

public class Collect{

......

 public static int collect_init();

......

}

On the RMI-client side, three types of events are collected, which are RMI Trace Start, RMI

Invocation, and RMI Return. The collection algorithm is as follows:

• When an RMI client thread starts, the instrumentation collects an RMI Trace Start event. For the

RMI Trace-Start event, a text event is collected following it.

• When the client stub invokes a remote call and marshals the call parameters, the instrumentation

collects an RMI Invocation event.

• When it receives and un-marshals the return value, the instrumentation collects an RMI Return

event.

On the RMI-server side, six types of events are collected, which are RMI Trace Start, RMI Trace

Create, RMI Trace Spawned, RMI Request, RMI Reply, and RMI Served. The collection algorithm is

as follow:

• When a daemon thread starts, the instrumentation collects an RMI Trace Start event. For this event,

a text event is collected following it.

• Each time the server skeleton receives an RMI request, it creates a service thread for this RMI

invocation. The instrumentation collects an RMI Trace Create event for the daemon thread and an

RMI Trace Spawned event as the first event of the spawned thread.

• When the service thread unmarshals the parameters of the RMI, the instrumentation collects an RMI

Request event.

When the RMI finishes in the service thread,

51

• The instrumentation collects an RMI Reply event if this RMI call has a return value;

• The instrumentation collects an RMI Served event if this RMI call has no return value. In this case,

the RMI call has “void” return type.

4.3.1.2 Task Data Collection

Our instrumentation to collect task data includes three parts: generation of task identifiers,

propagation of task identifiers, and collection of task identifiers.

• Generation of Task Identifier

In a composite RMI, the generator of a task identifier is the end client. The length of task identifier is

16 bytes in our instrumentation. Our instrumentation uses a class called TaskID to handle the

generation of the task identifier. The main methods of this class are shown below:

Since o

For a c

clients

whethe

thread

spawn

only th

the thr

public class TaskIDGenerator{

public static byte[] getTaskID();

 public static boolean isZero(byte[] taskID);

}
ur solution is based on the thread level, the thread is the “real” generator of the task identifier.

omposite Java RMI, only the extreme-end client is the initiator of the task. The intermediate

 (also acting as servers) just propagate task identifiers. We use a flag for each thread to indicate

r it is an extreme-end RMI client. This flag of a service thread is set at the time the daemon

spawns the thread. The operation of an RMI server is such that a service thread must be

ed for an object to accept remote requests. Thus every RMI server will have this flag set and

e extreme-end client will not have the flag set. The instrumentation then determines whether

ead is the one initiating a task by whether or not this flag is set.

52

• Propagation of Task Identifier

After the task identifier is generated, we need to propagate it along the RMI call path. When an RMI

server invokes a remote call on other RMI servers, instrumentation has to deal with the propagation of

the task identifier for these invocation calls.

In accordance with our generic algorithm of Section 3.4.2, the mapping mechanism between the task

identifier and the thread is needed in the instrumentation. In our instrumentation, this mapping

mechanism is implemented by attaching a task tag to each thread. A thread can retrieve the task

identifier with which it is associated from the tag by using function shown as below:

byte[] Thread.currentThread().gettaskID();

In our instrumentation, the propagation of task identifiers is fulfilled by marshaling and un-

marshaling the task identifier wrapped in the RMI request, as shown in Figure 4.17. This procedure is

transparent to the applications.

The propagation algorithm is as follows:

• When an RMI client marshals the parameters, the instrumentation marshals such additional data as

the stream identifier (uniquely identifying an event stream), the trace identifier (uniquely identifying a

thread), the event-sequence count, and the task identifier.

• When an RMI server receives an invocation request, the instrumentation un-marshals those

additional data (the task identifier, etc.). Then, it sets the task tag of the spawned service thread to this

incoming task identifier.

• Collection of Task Data

The length of task identifier is defined in a class called TaskProperty, which is shown as below.

public class TaskProperty{

public final static int taskID_Length;
53 }

t

 Task
Tag

Thread

The instrumentation us

well as other event info

4.3.2 Visualization

In our visualization, a
defined as:

(a) The “RMI Trace St

(b) The “RMI Trace Cr

(c) The other events are

All of these are specifie

4.3.3 Results

Our sample source cod

Figure 4.19 shows the

RMI Reques

 Task
Tag

Thread

Figure 4.17: Propagation of Task Ide

es the collection methods of the Collect c

rmation (i.e., event sequence count, trace id

 trace represents the execution of a thread

art” event is represented by the filled square

eate” and “RMI Trace Spawned” events are

 represented by filled circles.

d in the target-description file.

e is given in Appendix D. The results of th

display, including task information, when an

54
Spawn and Dispatch

 Task

Daemon

Thread
Task Identifier
 Call Parameters
ntif

lass

ent

. Th

.

 rep

e sa

 ev
RMI Server

RMI Client
Tag

Propagation of the Task Identifier from an RMI Client to an RMI Server
ier

 to collect the task identifier as

ifier, and stream identifier).

e symbol shapes of events are

resented by the open circles.

mple are shown in Figure 4.18.

ent is selected.

RMI Server 2

RMI Server 1

RMI Client1
Spawned
Service Threads

RMI Client2

Figure 4.18: The Visualization Result for the Sample Source Code

RMI Server 2

RMI Server 1

RMI Client1

Spawned
Service Threads

RMI Client2

Figure 4.19: Display of a Positioned Event

4.4 Comparison with LTA

Our solution has the following advantages over LTA:

(1) LTA has no “task” concept as we define it. The correlation domains adopted by LTA currently are

not abstract, whereas our “task” concept is an abstract correlation domain. It can be mapped to

55

various target environments (Web Services, Java RMI, etc.). Thus, our correlation technique has good

target independence.

(2) Our solution maintains all of the features of POET. Our solution therefore can visualize partial-

order as well as task information. LTA does not present partial-order information.

4.5 Comparison with the Approach of Sahai et al.

The idea of task comes from the approach of Sahai et al. However, our solution has various

advantages over it.

(1) The approach of Sahai et al. is target-dependent. Its concept of “transaction” is bound to Web

Services and its “transaction” data collection relies on XML-formatted messages and SOAP. While it

is limited to a specific target, our solution is independent of any target.

(2) Our solution is more scalable and efficient than the approach of Sahai et al. in terms of

correlation-data collection. The task data appended to each message is of constant length in our

solution, while that in the approach of Sahai et al. is variable and frequently very large.

4.6 Comparison with POET Abstraction

Event abstraction and task correlation are not alternative but complementary techniques in POET.

Both of them are useful in analyzing event data. They differ in many aspects, including the following:

(1) Our solution focuses on the identification of tasks. It does not necessarily reduce the display

complexity. In some sense, our solution increases the display complexity by adding more coloring

options, while event abstraction reduces the visualization complexity by clustering multiple events

into a single one.

(2) They have different visualization methods. Our solution uses a coloring scheme (and pop-up text

box) to visualize task correlation while event abstraction uses a clustering method.

56

(3) The most important difference is that task correlation is not restricted to the requirement of

convexity to preserve the partial order. Such a difference enables task correlation to be applied to

more event sets than event abstraction. Therefore, task correlation is more flexible, and has broader

application. While it is possible to create abstract events from sets of events with the same task

identifier if those sets happens to be convex, in the general case this will not be possible.

57

Chapter 5
Conclusions and Future Work

In this thesis, we have explored a new correlation scheme, correlation by task. From our work, we

draw the following important conclusions.

First, we have eliminated the target dependence of the “transaction” concept in the approach of Sahai

et al. by redefining the “task” concept. “Task” is a generic correlation function, and has an abstract

domain that can be mapped to various concrete ones in various target systems. As discussed in

previous chapters, we have seen various “task”-correlator instances mapped from our generic

correlator into real target systems.

Second, we have developed a correlation solution on top of POET based on our “task” correlator. In

our solution we provided a visualization method for task correlation. We proposed general

requirements and an algorithm for the instrumentation of target systems. According to these

requirements we instrumented Java RMI and successfully collected task data.

We used both the testbed tool and Java RMI to evaluate our solution and achieved the expected

results. According to our cost analysis, our solution overcomes the scalability problem in Sahai’s

system. Therefore our solution is efficient and of good scalability, which is another advantage over

the approach of Sahai et al.

From the discussion above, we conclude that our solution is a feasible, efficient, and scalable

correlation solution. It is useful for the user to identify the relationships of events for various targets.

5.1 Future Work

There still exist some potential extensions for our work. They include:

(1) While we gave the basic idea of how to represent nested tasks, we did not implement nested-task

collection and visualization in POET. Our coloring solution to visualize task data is not suitable for

nested tasks since it will make the display complex and difficult to present task patterns.

 58

(2) Integration of task correlation and event abstraction. Our work focused on the correlation of

primitive events. We have not taken abstract events into account. Such work can be considered

together with that presented here. For example, one possible approach is to use event abstraction to

cluster the events in some level of a task hierarchy. The correlation can be applied in the upper level

of the task hierarchy. By integrating task correlation and event abstraction, the visualization of nested

tasks may be solved as well.

(3) There is much practical work in the instrumentation of other targets, especially those of

heterogeneous systems, such as Web Services and multi-tier web applications. “Task” is very useful

in such targets. The reason that we did not instrument such systems is that POET cannot provide

multi-target functionality at this time. However, we believe that POET will provide such functionality

in the near future as it is evolving fast. At the time POET is able to do that, our solution should

produce more valuable information for the user to monitor multi-target systems and analyze their

behavior.

59

Appendix A
A SOAP Message Containing MDR

(Below is from [SMO+02])

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV=http://schema.xmlsoap.org/soap/envelop/

 SOAP-ENV: encodingStyle: http://schema.xmlsoap.org/soap/encoding/>

<SOAP-ENV: Header>

<MDR>

<parent_mdr><parent_mdr>

<message_id>a unique message_id number</message_id>

<message_type>a type of message</message_type>

<source>a source identifier</source>

<target>target identifier</target>

<time_sent>a time record</time_sent>

<time_received>another time record</time_received>

</MDR>

</SOAP-ENV:Header>

<SOAP-ENV: Body>

 <PurchaseOrder>

 <Item count = 100> Postit sticky notes </Item>

 <Item count = 200> Stapler </Item>

 <PurchaseOrder>

</SOAP-ENV: body>

</SOAP-ENV: Envelope>

60

Appendix B
A UEF-Formatted File

#ADED Ascii Dump of Event Data file

#Version 1.0

#2180

#1090341567

6a6a7775

4

4

25

00000010

3

0 00000000

1 01000000

2 02000000

3

0 0 280e74ffffffef

1 1 54ffffffbc042b

2 2 03ffffffaeffffffefffffffdf

1 0 0 -1 -1 1

1 1 0 -1 -1 1

1 2 0 -1 -1 1

2 0 1 -1 0 1

3 1 1 0 1 1

2 1 2 -1 0 1

3 2 1 1 2 1

2 2 2 -1 0 1

3 1 3 2 2 1

61

6 1 4 -1 -1 1

2 0 2 -1 0 2

3 1 5 0 2 2

2 1 6 -1 0 2

3 2 3 1 6 2

2 2 4 -1 0 2

3 1 7 2 4 2

6 1 8 -1 -1 2

62

Appendix C
Sample Testbed Scripts

Script 1
#begin

start 0 "trace 1"

start 1 "trace 2"

start 2 "trace 3"

start 3 "trace 4"

start 4 "trace 5"

start 5 "trace 6"

start 6 "trace 7"

start 7 "trace 8"

start 8 "trace 9"

start 9 "trace 10"

start 10 "trace 11"

start 11 "trace 12"

Do a simple synchronous RPC without task data

0 1

1 2

2 3

3 4

4 5

5 4

4 3

3 2

2 1

1 0

63

#Do a chain of simple synchronous RPCs with task

0 1 t: 1234567890abcdef

4

4

4

4

4 5

4 5

1 2 t: 1234567890abcdef

2 3 t: 1234567890abcdef

3 4 t: 1234567890abcdef

4 5 t: 1234567890abcdef

5 4 t: 1234567890abcdef

4 3 t: 1234567890abcdef

5 4

3 2 t: 1234567890abcdef

2 1 t: 1234567890abcdef

1 0 t: 1234567890abcdef

#Do another chain of simple synchronous RPCs with task

6 7 t: 9876543210fedcba

7 8 t: 9876543210fedcba

8 9 t: 9876543210fedcba

9 10 t: 9876543210fedcba

10 11 t: 9876543210fedcba

11 10 t: 9876543210fedcba

10 9 t: 9876543210fedcba

9 8 t: 9876543210fedcba

8 7 t: 9876543210fedcba

7 6 t: 9876543210fedcba

#end

64

Script 2
#start

start 0 "trace 1"

start 1 "trace 2"

start 2 "trace 3"

start 3 "trace 4"

start 4 "trace 5"

start 5 "trace 6"

async

#The first set of events without task identifier

0 1

1 2

2

2 1

1 0

#The second set of events with task identifer

0 1 t: abcdef0987654321

1 2 t: abcdef0987654321

2 t: abcdef0987654321

2 1 t: abcdef0987654321

1 0 t: abcdef0987654321

#The third set of events with task identifier

3 4 t: fedcba0987654321

4 5 t: fedcba0987654321

5 t: fedcba0987654321

5 4 t: fedcba0987654321

4 3 t: fedcba0987654321

65

Script 3
#start

start 0 "trace 1"

start 1 "trace 2"

start 2 "trace 3"

start 3 "trace 4"

start 4 "trace 5"

#The first set of events with task identifier

0 1 t: a1b2c3d4e5f60987

1 2 t: a1b2c3d4e5f60987

4 3 t: 9f8e7d6c5b4a0123

3 2 t: 9f8e7d6c5b4a0123

2 3 t: 9f8e7d6c5b4a0123

3 4 t: 9f8e7d6c5b4a0123

2 1 t: a1b2c3d4e5f60987

1 0 t: a1b2c3d4e5f60987

#end

66

Appendix D
Java RMI Sample Codes

1. RealTime.java
import java.net.*;

import java.rmi.*;

import java.rmi.registry.*;

import java.rmi.server.*;

public class RealTime extends UnicastRemoteObject

 implements RealTimeI

{

 public RealTime() throws RemoteException {

 // super();

 }

 public long getRealTime() throws RemoteException {

 return System.currentTimeMillis();

 }

 public static void main(String[] args) {

 try {

 RealTime rt = new RealTime();

 Naming.rebind("//localhost:1099/RealTime", rt);

 System.out.println("RealTime Ready to do Time");

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

67

2. PerfectTime.java
import java.net.*;

import java.rmi.*;

import java.rmi.registry.*;

import java.rmi.server.*;

public class PerfectTime extends UnicastRemoteObject

 implements PerfectTimeI

{

 public PerfectTime() throws RemoteException {}

 public int getPerfectTime() throws RemoteException {

 RealTimeI rt;

 long rtime;

 try {

 rt=(RealTimeI)Naming.lookup("//localhost:1099/RealTime");

 rtime = rt.getRealTime();

 } catch (Exception e){e.printStackTrace(); return 0;}

 return 1;

 }

 public static void main(String[] args) {

 try {

 PerfectTime pt = new PerfectTime();

 Naming.rebind("//localhost:1099/PerfectTime", pt);

 System.out.println("Ready to do Time");

 } catch (Exception e) {

 e.printStackTrace(); }

 }

}

68

3. DisplayPerfectTime.java
import java.rmi.*;

import java.rmi.registry.*;

public class DisplayPerfectTime {

 public DisplayPerfectTime() {

 super();

 }

 public static void main(String[] args) {

 try {

 for (int i = 0; i < 2; i++) {

 PerfectTimeI t = (PerfectTimeI)Naming.lookup

 ("//localhost:1099/PerfectTime");

 System.out.println("PerfectTime:"+t.getPerfectTime());

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

69

References

[And+88] G. R. Andrews, et al. An overview of the SR language and implementation. ACM Trans.

Progr. Languages Systems, 10, 51-86. 1988.

[AOK+95] E. Arjomandi, W. O'Farrell, I. Kalas, G. Koblents, F. C. Eigler, and G. R. Gao. ABC++:

concurrency by inheritance in C++. IBM Sys. J., 34, 120-137. 1995.

[BuS91] P. A. Buhr and R. A. Stroobosscher. The µSystem: Providing light-weight concurrency on

shared-memory multiprocessor computers running Unix. Software - Practice Exper., 20, 929-963.

1991.

[CBE Website] Many Chessell, Jason Cornpropst, John Gerken, Bill Horn, Heather Kreger, Eric

Labadie, David Ogle, and Abdi Salahshour. Specification: Common base event. Available at

http://www-106.ibm.com/developerworks/webservices/library/ws-cbe/. July, 2003.

[EdE98] Guy Eddon and Henry Eddon. Inside Distributed COM. Microsoft Press, February, 1998.

 [GBD+94] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM:

Parallel Virtual Machine. A User's Guide and Tutorial for Networked Parallel Computing. MIT

Press, Cambridge, MA. 1994.

[GKV94] Siegfried Grabner, Dieter Kranzlmuller, and Jens Volkert. EMU - Event Monitoring Utility.

Technical Report, Institute for Computer Science, Johannes Kepler University Linz, July 1994.

[GEG+01] Thomas Gschwind, Kave Eshghi, Pankaj K. Garg, and Klaus Wurster. Web Transaction

Monitoring. HPL-2001-62, http://www.hpl.hp.com/techreports/2001/HPL-2001-62.html.

[LogTrace Website] IBM Corporation. Log and Trace Analyzer for Autonomic Computing. Available

at http://www.alphaworks.ibm.com/tech/logandtrace.

70

[OLT Website] IBM Corporation. WebSphere application server, Object-Level Trace. Technical

Report. Available at http://www-306.ibm.com/software/webservers/appserv/olt.html, IBM

Corporation, 1998.

[LTA Documents] IBM Corporation. Log and Trace Analyzer Version 1.0.1, Help Documents, IBM

Corporation, 2003.

[KGV95] Dieter Kranzlmuller, Siegfried Grabner, and Jens Volkert. Race condition detection with

the MAD environment. In Second Australasian Conference on Parallel and Real-Time Systems,

pages 160-166, September 1995.

[KGV97] Dieter Kranzlmuller, Siegfried Grabner, and Jens Volkert. Debugging with the MAD

environment. Journal of Parallel Computing, 23(1-2):199-217, April 1997.

[Kun93] Thomas Kunz. Issues in event abstraction. In Proceedings of PARLE '93: Parallel

Architectures and Languages Europe. Edited by Arndt Bode, Mike Reeve, and Gottfried Wolf.

Published by Springer-Verlag, Munich, Germany. Lecture Notes in Computer Science. Number 694,

pages 668-671, June 1993.

[Kun94] Thomas Kunz. Abstract Behaviour of Distributed Executions with Applications to

Visualization. Technische Hochschule Darmstadt, Darmstadt, Germany. May 1994.

[KBT+97] Thomas Kunz, James P. Black, David J. Taylor, and Twan A. Basten. POET: Target-

system independent visualizations of complex distributed-application executions. The Computer

Journal, 40(8): 499–512, 1997.

[Lam78] L. Lamport. Time, clocks, and the ordering events in a distributed system. Communications

of the ACM, 21(7): 558-565, July 1978.

[Lok95] Swee Loke. Debugging Support for a Real-time System. Master’s thesis, Queen’s University,

1995.

71

[E-XML website] OASIS. E-business XML. Available at http://www.ebxml.org.

[UDDI Website] OASIS. Universal Description, Discovery, and Integration. Available at

http://www.uddi.org.

[OSF93] Open Software Foundation. Introduction to OSF/DCE. Prentice-Hall, Englewood Cliffs, NJ.

1993.

[SMO+02] A. Sahai, V. Machiraju, J. Ouyang, and K. Wurster. Message tracking in SOAP-based web

services. Network Operations and Management Symposium, 2002. NOMS 2002. 2002 IEEE/IFIP, 15-

19 April 2002, pages 33- 47.

[See95] Ilene R. Seelemann. Visualizing Concurrent Object-oriented Programs. Master’s thesis,

University of Waterloo, Waterloo, Ontario, Canada. June 1995.

[SBL+91] Robert E. Strom, David F. Bacon, Andy Lowry, Arthur P. Goldberg, Daniel M. Yellin, and

Shaula Yemini. Hermes: A Language for Distributed Computing. Prentice-Hall, Englewood Cliffs,

NJ. 1991.

[Tay95] David J. Taylor. Event display for debugging and managing distributed systems. Proceedings

of International Workshop on Network and Systems Management, pages 112-124, August 1995.

[Tay03] David J. Taylor. File format for POET event-dump (.uef) files. Unpublished. November 18,

2003.

[Tay97] David J. Taylor. The POET Prototype: Structure and Operation. Unpublished. January 7,

1999.

[TKB95] David J. Taylor, Thomas Kunz, and James P. Black. Achieving target-system independence

in event visualisation. In CD-ROM Proceedings of the 1995 CAS Conference. IBM Canada Ltd.

Laboratory, Centre for Advanced Studies. Toronto, Ont., Canada. November 1995, pages 296-307.

72

[War02] Paul A. S. Ward. A Scalable Partial-Order Data Structure for Distributed-System

Observation. Waterloo, Ontario, Canada, 2002.

[SOAP website] W3C. Simple Object Access Protocol. Available at http://www.w3.org/TR/soap.

[WSDL Website] W3C. Web Services Description Language. Available at

http://www.w3.org/TR/wsdl.

[Xie04] Ping Xie. Convex-Event Based Offline Event-Predicate Detection. Master’s thesis, University

of Waterloo, 2004.

[YGS+89] S. A. Yemini, G. S. Goldszmidt, A. D. Stoyenko, and Y. H. Wei. CONCERT: A high-

level-language approach to heterogeneous distributed systems. In Proc. 9th Int. Conf. on Distr.

Comput. Systems, Newport Beach, CA, June, pages 162-171. IEEE Computer Society Press, Los

Alamitos, CA. 1989.

73

	Introduction
	Motivation
	Limitations of Existing Systems
	Contributions
	Organization

	Background and Related Work
	IBM Log and Trace Analyzer (LTA)
	Event Data and Collection
	Event Visualization and Correlation
	Limitations and Restrictions

	Message Tracking in Web Services
	Web Services and Messages
	SOAP Message Tracking
	Message Data
	Message Tracking and Correlator Collection

	Visualization
	Drawbacks and Limitations

	POET
	Event-based Model
	Event
	Event Collection

	Architecture of POET
	Event Collection
	UEF-Formatted File
	Target-System Independence
	Event Collection APIs

	Visualization and Analysis
	Correlation in POET

	Event Correlation by Task
	Event Correlation
	Task Concept
	Nested Tasks
	Event Correlation by Task
	Basic Consideration for Instrumentation
	Propagation of Task Identifier
	Collection of Task Identifier
	Task Identifier Mapping
	Agreement on Task Data between Event Server and Target

	Correlation Visualization

	Evaluation
	Cost Analysis
	Evaluation of Task Data Collection
	Testbed Environment
	Syntax of Testbed
	Results

	Java RMI Environment
	Instrumentation
	Event Collection
	Task Data Collection

	Visualization
	Results

	Comparison with LTA
	Comparison with the Approach of Sahai et al.
	Comparison with POET Abstraction

	Conclusions and Future Work
	Future Work

