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Abstract 

Event correlation is an important analysis technique in monitoring systems. Various correlation 

methods have been widely applied in many systems. Recently, Sahai et al. proposed a correlation 

scheme based on the “transaction” concept in Web Services. While it has limited application because 

of its target dependence and scalability problems, the idea behind this solution is useful for 

identifying behavior patterns in distributed and parallel systems. Existing monitoring systems have no 

correlation method analogous to that of Sahai et al. We therefore wished to extract the general 

transaction concept and develop a correlation solution independent of the target system. 

 

This thesis explores the task-based correlation mechanism in monitoring systems. We define a 

generic correlator independent of any target system. This correlator can be mapped to various 

concrete instances in various target systems. We develop a correlation scheme based on this correlator 

on top of the Partial-Order Event Tracer (POET). Our solution provides the general requirements for 

instrumentation as well as an algorithm to collect task-based correlation data and presents a 

visualization method for this correlation. We use the testbed tool and Java RMI to evaluate our 

solution. According to our cost analysis, our solution is efficient and has good scalability. Due to the 

abstract characteristic of our correlator, our solution is target-environment independent, eliminating 

one of the major disadvantages suffered by the system of Sahai et al.  
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Chapter 1 
Introduction 

A distributed system is composed of a number of loosely-coupled machines connected by some form 

of communication medium. In a distributed system the machines do not share system resources 

(memory, system clock, etc.). The entities in the distributed system interact by message passing. In 

such systems, the behavior of entities and interaction between them is not easily understood by the 

developer. The developer needs mechanisms to identify the behavior of the system, to enable 

determination of faults, and to optimize performance. 

 

A monitoring tool is useful for a developer to track and analyze the behavior of distributed systems. It 

collects event data and provides functionality to analyze that data, such as visualization of events and 

their relationships. While such a monitoring tool is useful, the large amount of event data in 

distributed systems makes such analysis difficult.  

 

Correlation is a widely used technique for event-data analysis. Event correlation is the process of 

determining relationships between events in order to identify patterns of events. In other words, event 

correlation is the process of finding related events according to some correlation criterion. It may help 

a developer identify behavior patterns and thus reduce the complexity of analysis. Existing tools 

provide various correlation mechanisms, such as “trace” in the Partial-Order Event Tracer (POET) 

[KBT+97], and “transaction” in the message-tracking system of Sahai et al. (which we will henceforth 

refer to as Sahai’s system) [SMO+ 02]. However, these systems do not solve the problem completely 

since they have various limitations. For example, POET cannot capture such a relationship as 

“transaction.” Conversely, Sahai’s system can capture the transaction relationship, but only in Web 

Services, and does so inefficiently.  

 

This thesis explores new ways to capture the transaction relationship efficiently and to remove the 

target-system dependency. Due to the target-system independence of POET, we adopt it as our base 

system to implement the new solution. 
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1.1 Motivation  

For distributed and parallel systems, isolated event data captured by monitoring tools, without well-

defined correlation, is of little value. Existing correlation solutions help the user identify patterns of 

behavior and reduce the complexity presented to the user to some degree. However, the size and 

complexity of existing systems is such that existing correlation solutions are insufficient. More- 

sophisticated correlation solutions are needed for monitoring and analyzing such systems, and more- 

efficient algorithms are needed for existing solutions. 

 

Sahai et al. proposed a correlation scheme for message tracking in Web Services [SMO+02]. They 

provided a correlation solution based on the “transaction” concept. Compared with correlation 

mechanisms in other monitoring systems, their introduction of “transaction” solves some problems. 

However, it has two limitations. First, their definition and implementation are closely tied to Web 

Services. Second, their algorithm does not scale. We believe that “transaction” is a useful concept that 

can be applied in many systems beside Web Services. It can be mapped to different correlation factors 

in different systems. It can be used to correlate events across multiple target systems. The extension 

and redefinition of “transaction” will remove the target dependence in the solution of Sahai et al.  

 

1.2 Limitations of Existing Systems  

We studied correlation features in several systems, including POET, Log and Trace Analyzer (LTA), 

and Sahai’s system. POET has some correlation features, such as traces, send-receive pairing, and 

automated abstraction. LTA [LTA Website] provides some correlation options, including URL, 

application ID, and time. It can correlate events based on individual or combined options of these 

criteria and on any user-defined criteria. The solution of Sahai et al. correlates SOAP messages by a 

tree structure in SOAP messages [SMO+02].   

 

However, these solutions have various limitations. LTA has limited correlation options, some of 

which are non-deterministic. It does not define any generic correlator though one can be plugged in. 

In particular, it does not have a “transaction” correlator. Furthermore, it does not present partial-order 

information.  
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The scheme of Sahai et al. is not an efficient and scalable approach in terms of correlation data 

collection. It does not scale well with respect to the number of messages per transaction. Its 

application is also limited to the XML Web Services environment.  

 

POET is a sophisticated monitoring system. It is independent of the target environment. However, it 

lacks a correlation mechanism  that can provide a snapshot of a “transaction” in distributed systems, 

which Sahai et al. provided. 

 

In summary, no existing monitoring system provides a complete and efficient solution for the 

transaction correlation proposed by Sahai et al. To build a monitoring tool with such a correlation 

mechanism, we must solve three major problems. They are 

 

(1) Define a correlator which is target-system independent. 

(2) Design an efficient and scalable collection mechanism for correlator information. 

(3) Design a visualization mechanism for such correlation. 

 

This thesis addresses these three problems, and provides a solution based on the existing POET 

system. 

1.3 Contributions 

This thesis has four contributions: 

(1) We define a generic correlator, “task.” The domain of our correlator is an abstract one which can 

be mapped to various concrete domains for concrete systems. Thus the correlator we define is target-

system independent.  

 

(2) A method of correlator collection is proposed to solve the problem of collecting correlation data 

for large and complex target systems (e.g., multi-target systems). This approach includes an algorithm 

for instrumenting the target system and for defining the mapping between external and internal task 

identifiers in the event server of POET. Our approach is efficient, scalable, and flexible in terms of 

correlator collection, which solves the problem of the solution of Sahai et al. Our approach does not 

have significant additional cost.  
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(3) We implemented our solution within POET. Our tool has the functionality of collecting 

correlation data and performing correlation visualization. Our solution has good interoperability and 

backward compatibility. Any target system that works with the original POET needs no changes if 

correlation data is not collected and only minor changes if it is collected. The additional cost is not 

significant because we collect the correlator information with a small constant consumption of space 

and bandwidth. Our solution provides a visualization scheme for correlation at the event level. 

Because we adopt POET as our base visualization tool, our visualization is able to display the whole 

partial-order of events as well as correlation information. 

 

(4) According to the generic algorithm in (2), we instrumented Java RMI and evaluated the results. 

1.4 Organization 

The remainder of this thesis is composed of four parts. Chapter 2 presents our research background 

and related work. In this chapter, we review three systems: LTA, Sahai’s system, and POET. In 

particular, we discuss the correlation functionality of each of them. Chapter 3 presents the definition 

of our correlator and our correlation solution within POET. In this chapter, we provide general 

requirements and an algorithm for instrumentation as well as a method of correlation visualization in 

POET. In Chapter 4, we evaluate our solution. We first analyze the costs of our solution. Then, two 

target environments, the testbed tool and Java RMI, are used to evaluate our solution in a practical 

sense. Finally, we compare our solution with existing correlation techniques discussed in Chapter 2. 

In Chapter 5, we draw conclusions from our work and outline possible extensions.  
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Chapter 2 
Background and Related Work 

 

In this chapter, we give a brief introduction and review of three monitoring systems: IBM’s LTA, 

Sahai’s system, and POET. In Section 2.1, we describe the log file and Common Base Event (CBE) 

used in LTA. We focus on the visualization and correlation. In Section 2.2, we review the 

mechanisms of correlator collection and visualization of Sahai’s system. In Section 2.3, the 

architecture of POET, its mechanism for event collection, and features of its display are described, 

since it forms the basis of our solution.  

2.1 IBM Log and Trace Analyzer (LTA) 

LTA is part of the Hyades project. It is an Eclipse-based monitoring system that monitors Java 

programs as well as analyzing log files generated by various systems including IBM WebSphere 

Application Server, IBM HTTP Server, IBM DB2 Universal Database, and Apache HTTP Server 

[LogTrace Website]. 

 

LTA has two sub-systems: a logging tool and a profiling tool [LTA Documents]. The profiling tool is 

the part that interacts with the instrumentation inside the target. The instrumentation in the target side 

is called the profiling agent. This agent can collect run-time data from the target process and send 

them to LTA for visualization and analysis. The logging tool is used to analyze various log files 

generated by the targets.  In this way, both log data and profile data can be visualized in LTA. 

2.1.1 Event Data and Collection 

Two types of event format are employed in LTA. One is the format of the original log record, the 

other is CBE used inside LTA.  

 

The original event data are stored in log files, and their formats and content vary from target to target. 

Their generation depends on the target itself. For example, log records generated by an HTTP server 

are different from those generated by the DB2 Database.  
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Figure 2.1: Layout of LTA 

 

To solve the problem of the diversity of log file formats, the logging tool uses CBE to provide a 

consistent view for various types of event records. CBE uses an XML-based format to describe 

events. It defines the structure of an event in a consistent, common format [CBE Website]. Each CBE 

record represents an event occurring in a target. It includes the event identification, the identification 

of the reporting entity, the identification of the affected entity, associated message content, and 

related data. CBE improves the flexibility and interoperability of event data. However, its drawback is 

the problem of efficiency, since each CBE-format event is typically 1KB.  

 

To convert various log formats to the CBE format, LTA needs a parser for each type of log. Such a 

parser is implemented as a plug-in for LTA. This structure gives LTA some degree of flexibility to 

deal with different event data generated by various targets. However, this parsing is another cost of 

using CBE. 
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The logging tool obtains event data from log files generated by targets. Only when LTA executes the 

import action is the log file containing event data read and converted to CBE format. The profiling 

tool obtains event data from instrumented targets. 



 

2.1.2 Event Visualization and Correlation 

LTA presents several views for users. The log view gives a tabular format. The user can view the 

information of any CBE event. The sequence-diagram view provides a graphic visualization for the 

events in the log file(s).  

 

The correlation plug-ins correlate events based on the rules specified by the plug-in. The rule is the 

policy to order or group events according to the values of some property or properties of those events.  

 

Existing correlations in LTA include correlation by time, correlation by URLs, and correlation by 

application IDs. They can be categorized into two types, sequence correlation and associative 

correlation [LTA Documents]. An example of sequence correlation is to order a set of events by time 

stamp. Correlating the events with same thread ID is an example of associative correlation. We will 

discuss these two correlations in Chapter 3. 

 

Fragments from two log files are used to show the relationships between them. The records selected 

contain multiple errors so as to demonstrate the correlation found by LTA between access and error 

logs. The fragments are listed in Figure 2.2 and Figure 2.3. The log view and the result of correlation 

by time are shown in Figures 2.4 and 2.5, respectively. 

2.1.3 Limitations and Restrictions 

LTA has two limitations. First, large CBE records increase the probe effect for the profiling tool. This 

is the effect the collection of information imposes on the information being collected. Second, LTA 

cannot collect partial-order information at present.  
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Figure 2.2: A Fragment of an Access Log Generated by an HTTP Server 

 

 

 

 

 

 

 

 

 

 

...... 

 

[Wed Jan 15 10:41:00 2003] [error] [client 9.131.0.90] File does not

exist: c:/apache group/apache/htdocs/scripts/root.exe 

[Wed Jan 15 10:41:01 2003] [error] [client 9.131.0.90] File does not

exist: c:/apache group/apache/htdocs/msadc/root.exe 

[Wed Jan 15 10:41:02 2003] [error] [client 9.131.0.90] File does not

exist: c:/apache group/apache/htdocs/c/winnt/system32/cmd.exe 

[Wed Jan 15 10:41:02 2003] [error] [client 9.131.0.90] File does not

exist: c:/apache group/apache/htdocs/d/winnt/system32/cmd.exe 

...... 
 

 

 

...... 

 

9.131.0.90 - - [15/Jan/2003:10:41:00 -0500] "GET

/scripts/root.exe?/c+dir HTTP/1.0" 404 289 

9.131.0.90 - - [15/Jan/2003:10:41:01 -0500] "GET

/MSADC/root.exe?/c+dir HTTP/1.0" 404 287 

9.131.0.90 - - [15/Jan/2003:10:41:02 -0500] "GET

/c/winnt/system32/cmd.exe?/c+dir HTTP/1.0" 404 297 

9.131.0.90 - - [15/Jan/2003:10:41:02 -0500] "GET

/d/winnt/system32/cmd.exe?/c+dir HTTP/1.0" 404 297 

9.131.0.90 - - [15/Jan/2003:10:41:03 -0500] "GET

/scripts/..%255c../winnt/system32/cmd.exe?/c+dir HTTP/1.0" 404 311 

9.131.0.90 - - [15/Jan/2003:10:41:03 -0500] "GET

/_vti_bin/..%255c../..%255c../..%255c../winnt/system32/cmd.exe?/c+dir 

HTTP/1.0" 404 328 

 
...... 
 

Figure 2.3: A Fragment of an Error Log File Generated by the Same Server 
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Figure 2.4: Log View 

 

 

Figure 2.5: Correlation by Time  
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2.2 Message Tracking in Web Services 

Sahai et al. propose a decentralized solution for message tracking in Web Services [SMO+02]. In their 

solution, a correlation method based on transactions is introduced. Although their correlation 

algorithm is specific to Web Services, the idea can be extended to a broader scope of targets.  

2.2.1 Web Services and Messages 

In the broad sense of the term, Web Services is a formatted message-based model for applications and 

web sites to be interoperable with each other. In more technical terms, it is Remote Procedure Call 

(RPC) where all involved parties agree on the exchange of standard-format messages, specifically 

using XML-based syntax. Web Services are enabled by a set of standards and technologies. They are: 

Simple Object Access Protocol (SOAP) [SOAP Website], Universal Description, Discovery, and 

Integration (UDDI) [UDDI Website], and Web Services Description Language (WSDL) [WSDL 

Website]. 

 

In Web Services, a complete computing service is often a composite one which comprises a set of 

remote invocations via SOAP across heterogeneous platforms. It is helpful for the developer to track 

the invocation path for a specific service.  

2.2.2 SOAP Message Tracking 

Sahai et al. use the idea of a transaction to represent a composite web service. Their concept of 

transaction is different from the one in database systems. Rather it is a portion of business logic with a 

clearly defined begin-point and end-point [SMO+02]. Their solution is to track the messages 

belonging to the same transaction. In contrast to LTA, event collection in this solution depends on the 

use of SOAP messages.  

 

2.2.2.1 Message Data 

In this solution, correlation data are collected during the interoperation of entities in various web 

services. Such interoperation is accomplished by extra data flowing through the entities. The extra 

data are in the form of a data structure called a Message Detail Record (MDR), which is shown 

below.  The parent-MDR field represents the transaction relationship. Appendix A gives an example 

of a SOAP header containing an MDR [SMO+02]. 

10 



 

 

MDR 
{ 

         parent_mdr       :         message detail record of the parent message 

        message_id        :         unique identifier of the message 

        message_type    :         type of the message 

        source               :         identifier of the service originating the message 

        target                :         identifier of the service receiving the message 

        time_sent          :         time when the message was sent by source 

        time_recd         :         time when message was received by target 

} 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.2.2 Message Tracking and Correlator Collection 

In this solution, message tracking and correlation collection are fulfilled by building MDR trees in the 

header of the SOAP message. When a message is being sent, a new MDR is created and inserted into 

the appropriate child position of its context MDR. When a message is received, the MDR tree 

contained in the SOAP header is extracted and merged with the MDR-Forest stored by the receiver.  

 

A tree structure of MDRs (for the exchanged SOAP messages shown in Figure 2.6) is shown in 

Figure 2.7. Each tree represents a web-services transaction. Each node in the tree represents a 

message in the tracking path. A child node means the message occurs in the context of its parent 

message. As we can see, message correlation is represented by the tree structure of the MDRs.  

 

It is readily seen that the size of the tree grows with the length of the path of a transaction. 

Accordingly, the size of the header of a SOAP message is a variable determined by the length of a 

transaction. That is, the message-space complexity of this solution is O(N), where N is the path length 

of the transaction.  
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view of the initiator of a transaction. Figure 2.9 shows an incomplete visualization view from the 

intermediate node officesupplies.com in the transaction. 

 

2.2.4 Drawbacks and Limitations 

This approach provides a deterministic correlation solution based on the “transaction” concept, but it 

has some limitations. 

 

(1) It does not scale well with the growth of the number of messages per transaction. As we have 

discussed in the previous section, the size of the SOAP message containing the MDR tree increases 

through the transaction path. Its complexity is variable depending on the path of a transaction.   

 

(2) The message tracking and collection is tightly bound to XML-formatted data. This reduces its 

flexibility, interoperability, and portability. It does not have good target independence. 
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2.3.1.1 Event 

An event is a transition from one state to another. Events are “atomic,” which means they take zero 

time to occur. The concept of event is independent of any concrete system. Events can be instantiated 

in a variety of concrete systems.   

 

In monitoring systems adopting the event-based approach, the event types differ from target to target, 

and depend on what information the user wants to capture. For example, an RPC call can mean two 

events for two processes, one a send event, and the counterpart a receive event. However, an RPC 

may have several pairs of events between two processes if we want to capture message interactions at 

the TCP level.  

 

From the point of view of the end user, the event is the unit that should visualized. However, the 

display of a collection of isolated events is far from enough for the user. The pattern of relationships 

between events is critical. The first obvious pattern is the order relationships. In distributed systems, 

the partial order is the ordering relationship of events. Lamport’s happened before [Lam78] 

determines the partial-order relationship in distributed systems. It is denoted by “→”. The rules of 

happened before are 

 

• If a and b stand for two events in the same process, and a occurs before b, then a→ b. 

• If a is the sending point of a message and b is the receiving point of the same message by 

another process, then a → b. 

• If a → b and b → c, then a → c. 

• Events a and b are concurrent if and only if neither “a → b” nor “b → a” is true. 

 

2.3.1.2 Event Collection 

In a monitoring system, a critical requirement is to collect the event data generated by the target. 

Event data is collected by inserting small pieces of code that report to the monitoring system the 

necessary event information. Such instrumentation code is inserted into the operating system, run-

time environment, communication library, or application code itself, as appropriate [See95]. Such 

instrumentation varies from system to system. The concrete instances of events are target dependent. 
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The event may be low level, such as local system call. It may be a higher-level one, such as an HTTP 

request or a SOAP action.  

 

A problem of instrumentation is the probe effect. Instrumentation may perturb the ordering of events 

in a program execution so that the collection of information can actually affect the information being 

collected [See95]. POET minimizes this effect by collecting a minimal amount of information. 

 

2.3.2 Architecture of POET 

POET has a client/server architecture. The run-time architecture of POET is shown in Figure 2.10. 

For a simple configuration, POET consists of an event-server process and two client processes: the 

debug-session process and the checkpoint process.  

 

The event server (also called disk server) interacts with both the monitored targets and various clients. 

It is responsible for receiving, processing, and storing event data from the target application, and for 

sending event data, on request, to its clients.  

 

The debug-session process is the visualization part of POET. It is responsible for direct interaction 

with the end user [KBT+97]. It can reside remotely as well as on the same machine as the event 

server, which depends on the configuration of POET. Its major functionality is to obtain end-user 

input via the keyboard and mouse and produce an appropriate display in response. This process 

contains the algorithms for the debugger display, such as display scrolling, clustering, and event 

abstraction. 

 

The checkpoint process is an optimization to improve system performance.  

 

The target programs are the monitored processes that have instrumentation to interact with the event 

server. The instrumentation is responsible for generating event data and sending them to the event 

server. 
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Figure 2.10: The Architecture of POET 

2.3.3 Event Collection 

The instrumentation inside targets sends raw event data to the POET event se

streams using the POET Event-Stream Protocol, as shown in Figure 2.11. 

 

There are two types of events, normal events and text events, which are sent ov

normal event contains information about the event, as well as information about its 

has one and if that information is known. The information in the event includes even

identification, event count (i.e., the event’s position, starting from 0, on a trace), a

The information of the partner event includes stream identification, trace identifi

count. A text event includes the text information of the immediately preceding no

same stream. 

 

17 
rver over TCP/IP 

er this stream. A 

partner event, if it 

t type, local-trace 

nd real-time data. 

cation, and event 

rmal event in the 



 

 

l l
 

 

 

 

                           

                           

 

 

                      

 

         

         

         

raw event data 

 

Target 

Program 

Target 

Program 

 

Target 

Program 

 

 

 

 

Send-receive pa

instrumentation, 

a send event occ

trace identifier, 

instrumentation 

operations are pe

2.3.3.1 UEF-Fo

The event server

is a sequential 

independent [Ta

stream data, trac

file. In such a c

parses the event 

the event data, 
       TCP Stream

                   

 
t

raw event data 

 

 

 

 

i

t

u

o

r

r

 

A

y

e

a

d

t

TCP Stream
 
t

 

raw event data 

 

Event Server

 

TCP Stream
Figure 2.11: Event Streams

ring and synchronous-event pairing are

he send-receive relationship of events is c

rs, the outgoing message will have data ap

and event count. When the correspond

btains these data from the incoming me

formed as described above. 

matted File 

may persistently store the event data in a 

SCII file that is independent of differ

03]. A UEF-formatted file is composed

 data, and event data. The user can reloa

se, the reload program retrieves the eve

ata, and sends them to the event server th

he reload program sets up streams to t

18 
requests
 in POET 

 important re

aptured in the

pended to it s

ing receive e

ssage. For syn

UEF-formatted

ent versions 

 of four majo

d event data s

nt data stored

rough the Eve

he event serv
event data
requests
 event data
TCP Stream
lationship

 following

uch as the

vent occu

chronous 

 file. A U

of POET 

r sections

tored in th

 in the UE

nt-Stream 

er as used
Debug-session Clien
Debug-session Clien

TCP Stream
Event-Stream Protoco
 POET Client-Server Protoco
   •

•

•

s in POET. For 

 way: At the time 

 stream identifier, 

rs, target-system 

events, the same 

EF-formatted file 

and is platform-

: general header, 

e UEF-formatted 

F-formatted file, 

Protocol. To send 

 by the original 



 

execution. Thus from the view of the event server, the reload program operation is indistinguishable 

from the original execution. 

 

2.3.3.2 Target-System Independence 

POET provides target-system independence by means of a target-description file and an initial 

pseudo-event.  

 

The target-description file contains relevant characteristics of a specific target environment. It is 

composed of a set of keywords and their values for the target and an event-description table that 

describes the events in detail for a target environment. The keywords include the target identifier, 

event-window title, and program-window title. The event-description table contains a sequence of 

entries each of which provides the relevant information for an event type of a specific target. The 

information for an event type includes index, partner-event type, and visualization characteristics 

[KBT+97]. New keywords and values can be added to this file if new characteristics are needed to 

describe a target. POET reads the target-description file and obtains the corresponding values at the 

time the target-environment application sends an initial pseudo-event to it, indicating the target type. 

 

Before the target program starts to send any normal event data to the event server, it first sends a 

special event record, called event zero, to inform the event server of a new stream of event data. This 

pseudo-event contains the target identification, event parameters of the stream, etc. This information 

is used by the event server to process the event data over this stream properly. The data structure of 

the initial pseudo-event is as shown below: 
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typedef struct { 

   int  magic_int;     /* A constant integer to indicate the byte order;*/

   char magic_str[4];  /* A constant string to determine character code*/  

   int  target_id;     /* The target identifier */ 

   int   stream_len;    /* The length of a stream identifier */ 

   int  trace_len;     /* The length of a trace identifier */ 

   int  text_len;      /* The length of a text string */ 

   unsigned flags;         /* A flag field */ 

   char stream_id[1];  /* The stream identifier, the length is    

                               specified by stream_len */  

} EVENT_ZERO; 
 

.3.3.3 Event Collection APIs 

OET provides a set of APIs for the instrumentation to facilitate event collection. There are three 

mmonly used API functions: DBG_collect, DBG_both_collect, and DBG_text_collect.  

he function DBG_collect is used to create and transmit a single normal event without text data. Its 

terface is as below:  

void DBG_collect(unsigned e_type,     /* Event type of the generated event*/ 

void*    e_trace,    /* Trace identifier of the generated    

                                         event*/ 

int      e_evcnt,    /* Event count of the generated   

                        event*/ 

void*    p_stream,   /* The stream identifier of partner  

                        event*/ 

void*    p_trace,    /* The trace identifier of partner event*/

int      p_evcnt     /* The event count of partner event*/ 

      )  

unction DBG_text_collect is used to collect only text events and it has the following interface:  
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Another function, DBG_both_collect, is used to collect event data and associated text data. It has the 

following interface:  
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void DBG_both_collect (unsigned  e_type, /* Event type for normal event*/ 

   void*     e_trace, /* Trace identifier of the    

                              generated event*/ 

   int       e_evcnt, /* Event count of the generated  

                              event*/ 

   void*     p_stream,     /* Stream identifier of the   

                                                  generated event*/ 

   void*     p_trace, /* Trace identifier of partner   

                                                  event*/ 

   int       p_evcnt,      /* Event count of partner event*/

   unsigned  text_e_type,  /* Event type for text event*/ 

   char*     e_name        /* Text string*/ 

            ) 
void DBG_text_collect(unsigned e_type,  /* Event type */ 

  char* e_name  /* Text string */

  ) 
 

 call to the DBG_both_collect function is equivalent to a call to DBG_collect followed by a call to 

BG_text_collect. The reason for using DBG_both_collect is to avoid interference between these two 

alls from a different thread in a multi-threaded environment. Specifically, the text event must 

mmediately follow the normal event for which it provides text data, or it will either be lost, or 

worse) attach its text data to the wrong event.   

    

.3.4 Visualization and Analysis 

he POET visualization layout is composed of a number of horizontal lines, called traces, different 

ypes of symbols on the lines, arrowed lines connecting the symbols, etc. A horizontal line represents 
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a sequential entity (process, thread, etc.). A symbol on the line denotes an event belonging to the 

entity represented by that line. The symbol shapes used to represent events in a target environment are 

defined in the corresponding target-description file. An arrowed line connecting two symbols shows 

the interaction (communication) between them. Two types of arrowed line are used to represent 

synchronous and asynchronous communication. Figure 2.12 shows these two types of 

communication. For synchronous communication, two events are connected by a vertical arrowed 

line. For asynchronous communication, two events are connected by a sloping arrowed line.  

 

POET also provides the functionality of displaying detailed information for an event and the partial 

order of events. By positioning the cursor on an event and clicking the middle mouse button, the user 

can see a small display field appearing beside the event. That field shows such information as the type 

of the event, the name of the trace the event is on, the sequence number of the event within that trace, 

and the text string, if it exists. In addition, the events that are predecessors of this event and the ones 

that are successors will be colored differently. By default, all the predecessors are colored red and all 

the successors are colored green. Other events (including the selected event) remain uncolored. 

 

 

 

 

 

 

 

Figure 2.12: Synchronous and

 

2.3.5 Correlation in POET 

Various correlation mechanisms exist in POET. I

receive and synchronous-event pairs, as well a

predicate detection. 
 

 Asynchronous Communication 

n particular, it correlates events in traces, and send-

s allowing abstraction, real-time correlation, and 
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A trace is a horizontal line in the visualization. In different target environments, it may represent 

different entities. It can be a process, a thread, a mutex, or any sequential entity. For an event, this 

trace information is a form of correlation. All of the events with the same trace identifier will be 

visualized on the line representing the trace.  

 

Send-receive pairing and synchronous-event pairing are self-evident forms of correlation. They 

identify the send-receive and synchronous-event relationships between events, respectively. Such 

correlations are helpful to identify the interacting pairs of events in communication environments. 

 

Abstraction is an important technique that reduces display complexity by skipping undesired 

visualization detail. In POET, there are two types of abstraction: event abstraction and trace 

abstraction. Event abstraction is the process of grouping multiple events into a single abstract event 

based on certain rules. Similarly, trace abstraction is a technique that groups a set of traces into a 

cluster. However, these abstractions have some restrictions. For event abstraction, the event set to be 

abstracted must satisfy the convexity constraint. This constraint states that there is no event outside 

the convex set that happens before some event in the set while some other event in the set happens 

before it. Convex abstract events keep the atomicity property of primitive events. However, this is 

obtained at the expense of plausible abstract events. Figure 2.13 illustrates a plausible, but non-

convex, abstract event. The events enclosed by the dashed curve may belong to a correlated set of 

events. However, they cannot be grouped into an abstract event because the set does not satisfy the 

convexity constraint. The limitation of trace abstraction is that it cannot correlate events across parts 

of different traces.  

 

Predicate detection is a search mechanism that finds the event set matching predefined constraints 

(predicates), especially those specifying causality relations [Xie04]. Hierarchical predicate detection 

requires automated event abstraction, typically requiring the event set to be convex. 
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Figure 2.13: A Non-Convex Event Set 
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Chapter 3 
Event Correlation by Task 

In this chapter, we will explain the task concept and describe our correlation solution within POET. 

We introduce the general concepts of event correlation in Section 3.1, including correlator, domain, 

and categorization. In Section 3.2, we propose our correlator, “task,” and give examples of mapping 

from it to some concrete correlators. We compare event correlation and abstraction in Section 3.3. We 

describe our correlation solution in detail in Section 3.4.   

3.1 Event Correlation 

A correlator is a function that maps events into sets. As such it must have a well-defined domain. For 

example, the correlator “URL” can be used in the HTTP domain. A domain may be concrete or 

abstract. An abstract domain is generic and can be mapped to any concrete domain. For example, in 

POET, the trace is a generic correlator existing in an abstract domain that can be mapped to different 

concrete domains, such as process, socket, or object. 

  

In this thesis, we adopt the categorization criteria of correlation in LTA. The correlation is classified 

into two types: sequential and associative. 

 

(1) Sequential correlation orders a set of events by using a specific correlator and/or rules to put them 

in some sequence according to the order of correlator values. The obvious example is to order events 

by real-time timestamp.  

 

(2) Associative correlation clusters events by using some correlator (or correlators) and/or rules. An 

example is the “trace” in POET. A trace is a group that associates all events in the same sequential 

entity. Correlating events based on URL or application ID in LTA are other examples of such 

correlation. 

 

Two factors affect the efficiency and effectiveness of a correlator. These factors are the degree of 

independence from the target and the cost of collection.  
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The degree of independence determines the adaptability of the correlation. For example, “trace” in 

POET is independent of any target. It can therefore be mapped to various entities (process, thread, 

object, TCP socket, etc.). By contrast, “transaction” is bound to Web Services in Sahai’s system, 

which narrows its application for other targets. The characteristics of the correlator domain determine 

the degree of independence. An abstract domain enables a correlator to have a high degree of 

independence.  

  

The efficiency of correlator collection determines the efficiency of correlation. For example, the 

correlator collection in the approach of Sahai et al. is not efficient. 

 

3.2 Task Concept 

An important concept in many aspects of distributed systems is “task.” A task is a set of operations or 

actions that fulfill a specific computing purpose. It is an abstract concept that is meaningful for 

different distributed systems, including Web Services, distributed databases, RMI/RPC, CORBA, 

shared-memory systems, and parallel computing systems. In these distributed and parallel systems the 

computing entities may interoperate with each other to fulfill some specific computing purpose. We 

use “task” to refer to that purpose.  

 

There are various instances for this concept of task. We give some examples to explain it in detail. 

 

In web browsing, an instance of task might be viewing a web page. Such a task can be defined as the 

procedure of getting all of the objects (text, image, Java script, etc.) to display a complete web page. 

Thus, one web page display may contain multiple HTTP requests and responses. Figure 3.1 shows a 

task in web browsing. In Figure 3.1, four actions occur to complete browsing a web page (i.e., web-

page A). 

 

In Web Services, the task concept can be mapped to a business transaction. In such a context, a task 

refers to a set of invocations based on SOAP messages to fulfill a business-computing service. For 

example, a user purchases an item in an online store, called E-Store.com, as shown in Figure 3.2. This 
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3.3 Nested Tasks 

It can be useful to consider that there are sub-tasks or child tasks, occurring in the context of a parent 

task. Nested tasks are then needed to represent the relationship between task instances.  

 

An example of nested tasks is a composite session in web browsing (e.g., purchasing items on-line). 

Such a browsing session may comprise multiple web pages. Figure 3.4 shows a nested web-browsing 

session. The task is the complete session that comprises multiple web-page displays, while the sub-

tasks are the display of the web pages in this session. 

 

Another example use of nested tasks is nested transactions in a database, as shown in Figure 3.5. In 

this example an outer transaction contains an inner sub-transaction. The outer transaction might be 

viewed as a task, and the inner sub-transaction, its sub-task. 

 

The nesting relationship between tasks can be represented using a tree structure. For each task record, 

a field indicates its parent task. Thus, a tree comprising the parent-child relationship can be built to 

represent nested tasks, as shown in Figure 3.6. This approach allows us to maintain a fixed overhead 

when collecting task data. Nested tasks are not investigated further in this thesis. 

  

3.4 Event Correlation by Task 

We design a correlation solution based on the “task” concept on top of POET. We choose POET as 

our base system because our correlation solution needs a target-independent platform. To enable our 

correlation to function within POET, the target, the event server, and the debug-session client must 

interoperate in regard to correlator data. The “task identifier,” uniquely identifying any given task in a 

monitored environment, is the correlator data in our solution. Targets need to generate task identifiers 

and propagate them to each other in addition to sending them to the POET event server. The POET 

event server needs to process task identifiers from the target and send them to the debug-session 

client on request. The debug-session client needs to have a visualization method to display those task 

data received from the event server.  
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3.4.1 Basic Consideration for Instrumentation 

While the instrumentation will vary for different target environments, it should follow some generic 

requirements. In this section, we describe the basic requirements for multi-process and multi-thread 

environments communicating by message passing. In such environments, a process may handle 

multiple tasks concurrently. The general requirements for instrumentation then include the following. 

 

(1) The instrumentation must clearly define its task concept. That is, the instrumentation should map 

the “task” concept to the desired concrete instance (ACID transaction, composite RPC/RMI, etc.). 

 

(2) The task identifier needs to be globally unique across all threads and processes. Task identifiers 

may need to propagate across multiple processes and/or threads. To prevent conflict between task 

identifiers, it is necessary to keep the uniqueness of task identifier. A Universal Unique IDentifier 

(UUID) [OSF93] or Globally Unique IDentifier (GUID) [EdE98] may be used in some targets. While 

a UUID or GUID (a 128-bit number) is typically enough to guarantee the uniqueness, we do not 

presuppose that the correlator is always a 128-bit number. 
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Figure 3.6: Tree Structure Representing Nested Tasks 

 In addition to being unique, the identifier must have the same length across vario

tasks are to be correlated across those systems. Thus, POET and the target-system

st agree on the length of task identifiers. 

 The task identifier needs to propagate across multiple processes that may be

get environments. The instrumented environment may be of multiple processes th

ferent target environments. For example, enterprise-level web application system

hitecture. To capture the task data in such an environment, the task identifier sho

pagated across the heterogeneous platforms (web server, application server, data

rrently, POET cannot handle multiple targets simultaneously. 

.2 Propagation of Task Identifier 

e task identifier needs to be propagated to any event of the task. Consider 

mposite RMI in Java, as discussed in Section 3.2. Such a composite RMI invo

M processes, as shown in Figure 3.7. The task identifier of this composite RMI n

ong these JVM processes. 
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A more-complex example is a multi-tier web-application system. A task may include a chain of 

events occurring in a web server, application server, and database server, as shown in Figure 3.8. In 

this example the situation is more complex. The task identifier may be transferred by different 

transport mechanisms in different layers.  

 

The instrumentation has to associate each event with its appropriate task, and must consider two 

aspects, inter-process communication (i.e., message passing) and concurrency inside a process. The 

reason is that events occur in the context of both inter-process communication and concurrency. The 

combination of concurrency and multiple communication channels makes it difficult to associate 

events occurring in such an environment with appropriate tasks. To solve this problem, we introduce 

the “task context” concept, which stands for the current task context under which an event occurs. 

Figure 3.9 shows the structure of a task context. 
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             • • • • • • • Task Identifier Identifier of a Computing Entity (e.g., Thread) 

Figure 3.9: The Structure of a Task Context 

 

Since there may be multiple tasks simultaneously active in a target process, the instrumentation must 

properly switch task contexts for an expected event. This can be fulfilled by attaching a task tag, 

showing the task context for each thread, to each thread. 

 

In Section 2.3.3, we introduced the method which our instrumentation uses to capture the send-

receive relationship. For POET, instrumentation should solve the problem of passing the task 

identifier through send-receive pairing. Our algorithm is applied to four types of events: transmit, 

receive, unary, and synchronous. A unary event occurs without any message passing. A transmit 

event is a sending of a message. A receive event is a receiving of a message. A synchronous event is a 

pair of sending and receiving of a message in the form of synchronous communication. 

 

In our algorithm, we use 0 as a special value to indicate “no task.” Our algorithm is as follows. 

 

(1) When a unary event occurs, the instrumentation simply obtains its task context (i.e., task tag) by 

referencing the identifier of the thread where this event occurs.  

 

(2) When a transmit event occurs, the instrumentation will check the task status. If the thread is 

dedicated to a task, the instrumentation obtains the task identifier from the task context (i.e., task tag). 

If the thread is an initiator of a new task, the instrumentation generates a new task context with a new 

task identifier for this thread. The transmit event corresponds to a transmission operation. The 

instrumentation appends the task identifier as well as the stream identifier, the trace identifier, and the 

event count in the trace (the original instrumentation in POET) to the end of the outgoing message. 

 

(3) A receive event occurs when a message arrives. Instrumentation determines whether it must 

initiate a new task or accept the received task identifier. In the first case, the instrumentation will take 

the same action as (2); otherwise, it extracts the task identifier from the message. If the task identifier 
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is 0, the instrumentation determines that no task data is associated with this message and processes 

this event in the manner of one without any task identifier. If the incoming task identifier is not 0, the 

instrumentation will set the task tag of the thread to the incoming task identifier and save the old one 

in the case that the incoming task identifier is different from the current one.  

 

(4) When a synchronous event occurs, the operations the instrumentation performs are similar to 

those on a pair of transmit and receive events except that the receive end simply accepts the received 

task identifier since it is presumed that the two end points should have a close task relationship based 

on the consideration that it is not a pair of events but a single event. 

 

3.4.3 Collection of Task Identifier 

As discussed in Section 2.3.3, the instrumentation collects event data through the POET Event-

Stream Protocol. We modify this protocol in our solution by adding a new field to the normal event 

data structure. This field contains the task identifier that uniquely identifies the task associated with 

that event. The type of this field is a variable of type void to be adapted to various data types of 

targets. In our solution, we do not specify the length of task data. Our APIs can be adapted to task 

identifiers of arbitrary length. The agreement on the length of task identifier between target and event 

server will be discussed later.  

Considered together with the discussion in the previous section, the algorithm of task-identifier 

collection is as follows. When an event occurs, 

(1) If the instrumentation determines the event is associated with an existing task or that a new task 

needs to be created, it puts that task identifier in the event stream and sends it to event server.  

(2) If the instrumentation determines that this event does not belong to any task, it puts the special 

value (i.e., 0) in the event stream to indicate no task data. 

 

To facilitate the collection of task data, we modified the original DBG_collect and DBG_both_collect 

interfaces of POET that were introduced in Section 2.3.3.3. The new functions have very similar 

interfaces that can be easily used by the original users. 
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The first library function is used to collect a normal event with task data but without text information. 

Its modified interface is shown below. The only change we made is to add an argument task_ID, of 

type void*, to the original interface. The target-system instrumenter can use this function to collect an 

event associated with a task identifier. If an event has no task identifier, the special value will be 

collected (i.e., the task identifier is set to 0, or in other words a pointer to 0 is passed to the function.). 

This function can also be used by the original instrumenter to collect an event without a task identifier 

since the argument, task_ID, can be compiled optionally by the preprocessor. The length of the task 

identifier is defined in the header file, usr_debug.h, which is included by the file in which these 

functions are located.  

 

void DBG_collect(unsigned e_type,   /* Event type of the generated  

                                       event*/ 

                 void*    e_trace,  /* Trace Identifier of the   

                                       generated event*/ 

                 int      e_evcnt,  /* Event count of the   

                                       generated event*/  

                 void*    p_stream, /* The stream identifier of   

                                       partner event*/ 

                 void*    p_trace,  /* The trace identifier of   

                                       partner event*/ 

                 int      p_evcnt   /* The event count of partner   

                                       event*/ 

#ifdef TASK  

,                void*    task_ID   /* The task identifier of the  

                                       generated event*/ 

#endif 

                 )  

 

 

 

 

 

 

 

 

 

The second library function is used to collect a complete event with text information and task data. 

The modified interface is shown below: 
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void DBG_both_collect(unsigned   e_type, /* Event type for normal event*/ 

  void*      e_trace, /* Trace identifier of the     

                              generated event*/ 

  int        e_evcnt, /* Event count of the generated  

                              event*/ 

  void*      p_stream,     /* Stream identifier of the    

                              generated event*/ 

                      void*      p_trace,      /* Trace identifier of partner   

                                                                                                  event*/ 
                      int        p_evcnt,      /* Event count of partner event*/

#ifdef TASK 

       void*      task_ID,      /* The task identifier of the   

                                                  generated event */ 

#endif 

       unsigned   text_e_type,  /* Event type for text event*/ 

       char*      e_name        /* Text string*/ 

       ) 
.4.4 Task Identifier Mapping 

nside the event server, we implement an optimization for processing task data, which transforms task 

dentifiers from their target length to a shorter internal identifier. There are two reasons for this 

apping. A task identifier from the target is long (e.g., 128 bits). The display of such an identifier in 

he debug-session client is neither necessary nor desirable for the user. The other reason is that using 

uch an identifier causes unnecessary time and space cost for the event server and the debug-session 

lient.  

n our solution, we use a mapping table for each POET session to transform target task identifiers to 

nternal ones. Each time the event server receives a task identifier from the event stream, it looks 

hrough the mapping table for the internal identifier for that task identifier. If no matching task 

dentifier is found in the table, the event server creates a new entry by assigning a new integer for this 

ask identifier. The event server uses integer “0” to represent “no task.” 
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When POET persistently saves the event data to a UEF-formatted file, it stores the task identifier by 

using the internal format, “integer identifier.” When POET restores the event data by reloading the 

UEF-formatted file, it simply retrieves the integer task-identifier, pads with zero bits if the length of a 

target task-identifier is larger than the length of an integer, and then sends it to the POET event 

server. 

  

3.4.5 Agreement on Task Data between Event Server and Target 

The agreement on task data between the event server and the target includes two aspects: First, the 

length of the task identifier is specified in a header file, “usr_debug.h,” which is included by both the 

target-description file and the instrumentation program at compile time. Second, the event server 

determines the existence of the real task identifier for each event based on this value, with the special 

value “0” representing a void task identifier (i.e., no task data). We did not specify the length of the 

task identifier in event zero because the version of POET we used does not use enhanced event zero. 

3.5 Correlation Visualization 

We adopt the POET visualization because our solution is built on top of POET. However, we use a 

different visualization method for task correlation from that for abstraction. In event abstraction, a set 

of events is clustered into one abstract event that can be viewed as an atomic event. This form of 

display is enabled by the convexity property of abstract events, which is not present in our solution. 

 

Instead, we combine coloring and textual display to visualize task information. We use the 

functionality of the middle mouse button in POET. While keeping the basic features, we add 

coloration of events with the same task identifier and indicate that task identifier in the popup 

window. 

 

When a popup box appears, a new field, an asterisk followed by a number (which is the mapped task 

identifier for the event), showing the task information will follow the trace name and event sequence 

number, as shown in Figure 3.11. For those events without any associated task (i.e., task identifier is 

0), no task identifier is shown, which is same as the original behavior of POET. 
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The coloring for events in different tasks maintains the original coloring scheme. Events within the 

same task are colored according to their precedence relationship to the event being clicked.  A 

summary of the default coloring of our solution is shown in Table 3.1. The colors in Table 3.1 can be 

modified by using the POET resource file.  
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Chapter 4 
Evaluation 

In this chapter we analyze the costs of our solution, examine its use in some test environments, and 

compare it with existing solutions.  

4.1 Cost Analysis 

In our solution, extra costs are incurred since extra correlation data is collected. These costs include 

computing costs, communication costs, and storage costs.  

 

On the target-system side, there will be an O(1) cost for each new task. For each event, if the task 

identifier is required, there is an O(1) cost when it is copied. On the event-server side, the processing 

cost for the transformation of task identifiers is O(N), where N is the number of tasks. This cost can 

be reduced to O(1) amortized by the hashing method in which each task identifier from the target is 

hashed to a value, which is used as the index of the internal task identifier. On the debug-session side, 

the cost is O(1) for processing the task identifier for each event. 

 

The increased communication costs include three parts. The communication cost from the target side 

to the event-server side increases by Vt bits per event, where Vt is the length of a task identifier 

generated by the target. Similarly, the communication cost of passing task data between targets 

increases by Vt bits. The communication cost from the event-server side to the debug-session client 

side, however, is more complex to analyze, since event data is transported to the client in discrete 

blocks of multiple events. With task data present, there will be fewer events per block, but the block 

size remains the same.  The effect is that for sequential access, ignoring block-header-size overhead, 

the cost increases by 4 bytes per event on average. For random-access, however, the communication-

cost may not increase, but could double in the worst case. Specifically, when a set of consecutive 

events being accessed continues to fit into a single block, the cost does not change. If, on the other 

hand, the shift in the position of block boundaries causes a small set of events formerly in a single 

block to cross a block boundary, two blocks will need to be fetched rather than a single block, 

doubling the cost. 
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Figure 4.1: Testbed Environm

 

As discussed in Chapter 2, POET may persistently store t

file. With the task-identifier data, a UEF-formatted file co

Because the event server transforms the task identifier from

the length of the task identifier is reduced. Consequently, t

file is small for each event entry. For example, an integer 

number of bytes. Compared with the length of target-genera

persistent storage is reduced for each UEF-formatted file. 

integer task identifiers is shown in Appendix B. 

 

4.2 Evaluation of Task Data Collection 

To test the feasibility and efficiency of our approach, we us

POET server, and then display it with the debug-session pro

4.2.1 Testbed Environment 

The testbed tool interacts with the end user or reads input 

and DBG_collect_both API functions to send these events t

By using testbed, the user can create virtually arbitrary 

debugger.  
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4.2.1.1 Syntax of Testbed 

We made some modifications to the original testbed program, which enables it to generate task data. 

We implement two new commands in testbed. The new commands are shown in Figures 4.2 and 4.3. 

 

trace_number trace_number t: task_identifier  

 

 

Figure 4.2: Binary Events with Task Data 

 

 

 

 

trace_number t: task_identifier 

Figure 4.3: Unary Events with Task Data 

 

The identifier following the “t:” is associated with the event(s) as the task identifier. If there is no “t:” 

in the line (i.e., the original commands), it is presumed that the event has no associated task ID. Three 

sample scripts for our modified testbed program are shown in Appendix C. 

 

4.2.1.2 Results 

We use three scripts to test our solution. The first one tests simple synchronous events. The second 

tests simple asynchronous events. The third one tests the visualization of an event set that is not 

convex. In these displays, various shades of gray are used to visualize the task information of events. 

The events enclosed in a dashed curve belong to the same task. The dashed curve and the associated 

text are not parts of our visualization. They are used to enable the reader to more easily understand 

the diagram. 

 

In the first test, there are two tasks. The events belonging to them form two sets. The remaining 

events, without task identifiers, belong to no task. Figure 4.4 shows the visualization of this script. In 

this visualization, we select two events to display the task information. The displays for these events 

are shown in Figures 4.5 and 4.6.  
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Figure 4.4: Visualization of Script 1 
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In the second test, there are two tasks. Figure 4.7 shows t

and 4.9 show two events with task information. 
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visualization of script 3, which is listed in Appendix C. Figure
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Figure 4.10: Visualization of Script 3 
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4.3 Java RMI Environment 

Java RMI enables programmers to invoke methods on remo

Machines [RMI Website]. Fundamental to RMI is the obje

between the client and server. The stub and skeleton act as pr

other to transmit the parameters and return value. The architec

 

In Section 3.2, we discussed the mapping of “task” in the Ja

RMI may refer to a chain of invocations. All of the invocatio

computing purpose initiated by the first RMI client. An exa

shown in Figure 4.14.  

 

In a composite RMI, the intermediate RMI server acts as both
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Figure 4.15: The Infrastructure of Composite RMI Invocation 

 

• RMI Trace Start: a daemon thread or an RMI client thread starts. 

• RMI Trace Create: a daemon thread spawns a service thread. 

• RMI Trace Spawned: a new service thread is spawned in response to an RMI. 

• RMI Invocation: an RMI client invokes a remote call. 

• RMI Request: an RMI server receives an RMI call request. 

• RMI Reply: an RMI server replies to an RMI call request. 

• RMI Return: an RMI client receives the return values of an RMI call if the return   

                        type is not void. 

• RMI Served: an RMI server finishes an invocation service without a return value (i.e., the   

                        return type is void for an RMI call). There is no synchronization between the RMI   

                        client and the RMI server when the return type is void for an RMI call.   

 

Since the “Exit” event is not in our research scope, we do not collect it. In our instrumentation, the 

event types are defined in a class called EventType that is shown below: 
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JVM JVM 

RMI Skeleton 

Java RMI Server 
2 
public class EventType{ 

    public final static int RMI_TRACE_CREATE = 1; 

    public final static int RMI_TRACE_SPAWNED = 2; 

    public final static int RMI_INVOKE = 3; 
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inserted into the stub. Both of them use a set of Java functions implemented by a class called Collect. 

The interfaces of the collection functions are the same as in the C collect functions, modified for the 

Java type system. The static method collect_init() is used to collect event zero.  

 

 

 

 

 

 

 

public class Collect{ 

...... 

     public static  int collect_init(); 

...... 

} 

 

On the RMI-client side, three types of events are collected, which are RMI Trace Start, RMI 

Invocation, and RMI Return.  The collection algorithm is as follows: 

• When an RMI client thread starts, the instrumentation collects an RMI Trace Start event. For the 

RMI Trace-Start event, a text event is collected following it. 

• When the client stub invokes a remote call and marshals the call parameters, the instrumentation 

collects an RMI Invocation event.  

• When it receives and un-marshals the return value, the instrumentation collects an RMI Return 

event. 

 

On the RMI-server side, six types of events are collected, which are RMI Trace Start, RMI Trace 

Create, RMI Trace Spawned, RMI Request, RMI Reply, and RMI Served. The collection algorithm is 

as follow: 

• When a daemon thread starts, the instrumentation collects an RMI Trace Start event. For this event, 

a text event is collected following it. 

• Each time the server skeleton receives an RMI request, it creates a service thread for this RMI 

invocation. The instrumentation collects an RMI Trace Create event for the daemon thread and an 

RMI Trace Spawned event as the first event of the spawned thread. 

• When the service thread unmarshals the parameters of the RMI, the instrumentation collects an RMI 

Request event.  

When the RMI finishes in the service thread,  

51 



 

• The instrumentation collects an RMI Reply event if this RMI call has a return value; 

• The instrumentation collects an RMI Served event if this RMI call has no return value. In this case, 

the RMI call has “void” return type. 

 

4.3.1.2 Task Data Collection 

Our instrumentation to collect task data includes three parts: generation of task identifiers, 

propagation of task identifiers, and collection of task identifiers. 

 

• Generation of Task Identifier 

In a composite RMI, the generator of a task identifier is the end client. The length of task identifier is 

16 bytes in our instrumentation. Our instrumentation uses a class called TaskID to handle the 

generation of the task identifier. The main methods of this class are shown below: 
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public class TaskIDGenerator{ 

public static byte[]       getTaskID(); 

 public static boolean   isZero(byte[] taskID); 

} 
ur solution is based on the thread level, the thread is the “real” generator of the task identifier. 

omposite Java RMI, only the extreme-end client is the initiator of the task. The intermediate 

 (also acting as servers) just propagate task identifiers. We use a flag for each thread to indicate 

r it is an extreme-end RMI client. This flag of a service thread is set at the time the daemon 

spawns the thread. The operation of an RMI server is such that a service thread must be 

ed for an object to accept remote requests. Thus every RMI server will have this flag set and 

e extreme-end client will not have the flag set. The instrumentation then determines whether 

ead is the one initiating a task by whether or not this flag is set.  
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• Propagation of Task Identifier 

After the task identifier is generated, we need to propagate it along the RMI call path. When an RMI 

server invokes a remote call on other RMI servers, instrumentation has to deal with the propagation of 

the task identifier for these invocation calls.  

 

In accordance with our generic algorithm of Section 3.4.2, the mapping mechanism between the task 

identifier and the thread is needed in the instrumentation.  In our instrumentation, this mapping 

mechanism is implemented by attaching a task tag to each thread. A thread can retrieve the task 

identifier with which it is associated from the tag by using function shown as below: 

 

byte[]      Thread.currentThread().gettaskID();  

 

 

In our instrumentation, the propagation of task identifiers is fulfilled by marshaling and un-

marshaling the task identifier wrapped in the RMI request, as shown in Figure 4.17. This procedure is 

transparent to the applications.  

 

The propagation algorithm is as follows: 

• When an RMI client marshals the parameters, the instrumentation marshals such additional data as 

the stream identifier (uniquely identifying an event stream), the trace identifier (uniquely identifying a 

thread), the event-sequence count, and the task identifier.  

 

• When an RMI server receives an invocation request, the instrumentation un-marshals those 

additional data (the task identifier, etc.). Then, it sets the task tag of the spawned service thread to this 

incoming task identifier.  

 

• Collection of Task Data 

The length of task identifier is defined in a class called TaskProperty, which is shown as below. 

 

 

 

public class TaskProperty{ 

public final static int taskID_Length; 
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Figure 4.18: The Visualization Result for the Sample Source Code 
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4.4 Comparison with LTA 

Our solution has the following advantages over LTA: 

(1) LTA has no “task” concept as we define it. The correlation domains adopted by LTA currently are 

not abstract, whereas our “task” concept is an abstract correlation domain. It can be mapped to 
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various target environments (Web Services, Java RMI, etc.). Thus, our correlation technique has good 

target independence. 

 

(2) Our solution maintains all of the features of POET.  Our solution therefore can visualize partial- 

order as well as task information. LTA does not present partial-order information. 

 

4.5 Comparison with the Approach of Sahai et al. 

The idea of task comes from the approach of Sahai et al. However, our solution has various 

advantages over it. 

 

(1) The approach of Sahai et al. is target-dependent. Its concept of “transaction” is bound to Web 

Services and its “transaction” data collection relies on XML-formatted messages and SOAP. While it 

is limited to a specific target, our solution is independent of any target.  

 

(2) Our solution is more scalable and efficient than the approach of Sahai et al. in terms of 

correlation-data collection. The task data appended to each message is of constant length in our 

solution, while that in the approach of Sahai et al. is variable and frequently very large.  

 

4.6 Comparison with POET Abstraction 

Event abstraction and task correlation are not alternative but complementary techniques in POET. 

Both of them are useful in analyzing event data. They differ in many aspects, including the following: 

 

(1) Our solution focuses on the identification of tasks. It does not necessarily reduce the display 

complexity. In some sense, our solution increases the display complexity by adding more coloring 

options, while event abstraction reduces the visualization complexity by clustering multiple events 

into a single one. 

 

(2) They have different visualization methods. Our solution uses a coloring scheme (and pop-up text 

box) to visualize task correlation while event abstraction uses a clustering method. 
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(3) The most important difference is that task correlation is not restricted to the requirement of 

convexity to preserve the partial order. Such a difference enables task correlation to be applied to 

more event sets than event abstraction. Therefore, task correlation is more flexible, and has broader 

application. While it is possible to create abstract events from sets of events with the same task 

identifier if those sets happens to be convex, in the general case this will not be possible. 

 

 

57 



 

Chapter 5 
Conclusions and Future Work 

In this thesis, we have explored a new correlation scheme, correlation by task. From our work, we 

draw the following important conclusions. 

 

First, we have eliminated the target dependence of the “transaction” concept in the approach of Sahai 

et al. by redefining the “task” concept. “Task” is a generic correlation function, and has an abstract 

domain that can be mapped to various concrete ones in various target systems. As discussed in 

previous chapters, we have seen various “task”-correlator instances mapped from our generic 

correlator into real target systems. 

 

Second, we have developed a correlation solution on top of POET based on our “task” correlator. In 

our solution we provided a visualization method for task correlation. We proposed general 

requirements and an algorithm for the instrumentation of target systems. According to these 

requirements we instrumented Java RMI and successfully collected task data.  

 

We used both the testbed tool and Java RMI to evaluate our solution and achieved the expected 

results. According to our cost analysis, our solution overcomes the scalability problem in Sahai’s 

system.  Therefore our solution is efficient and of good scalability, which is another advantage over 

the approach of Sahai et al. 

 

From the discussion above, we conclude that our solution is a feasible, efficient, and scalable 

correlation solution. It is useful for the user to identify the relationships of events for various targets.  

5.1 Future Work 

There still exist some potential extensions for our work. They include: 

(1) While we gave the basic idea of how to represent nested tasks, we did not implement nested-task 

collection and visualization in POET. Our coloring solution to visualize task data is not suitable for 

nested tasks since it will make the display complex and difficult to present task patterns.  
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(2) Integration of task correlation and event abstraction. Our work focused on the correlation of 

primitive events. We have not taken abstract events into account. Such work can be considered 

together with that presented here.  For example, one possible approach is to use event abstraction to 

cluster the events in some level of a task hierarchy. The correlation can be applied in the upper level 

of the task hierarchy. By integrating task correlation and event abstraction, the visualization of nested 

tasks may be solved as well. 

 

(3) There is much practical work in the instrumentation of other targets, especially those of 

heterogeneous systems, such as Web Services and multi-tier web applications. “Task” is very useful 

in such targets. The reason that we did not instrument such systems is that POET cannot provide 

multi-target functionality at this time. However, we believe that POET will provide such functionality 

in the near future as it is evolving fast. At the time POET is able to do that, our solution should 

produce more valuable information for the user to monitor multi-target systems and analyze their 

behavior.  

 

 

59 



 

Appendix A 
A SOAP Message Containing MDR 

(Below is from [SMO+02])  

  
<SOAP-ENV:Envelope 

   xmlns:SOAP-ENV=http://schema.xmlsoap.org/soap/envelop/ 

   SOAP-ENV: encodingStyle: http://schema.xmlsoap.org/soap/encoding/> 

<SOAP-ENV: Header> 

<MDR> 

<parent_mdr><parent_mdr> 

<message_id>a unique message_id number</message_id> 

<message_type>a type of message</message_type> 

<source>a source identifier</source> 

<target>target identifier</target> 

<time_sent>a time record</time_sent> 

<time_received>another time record</time_received>  

</MDR> 

</SOAP-ENV:Header> 

<SOAP-ENV: Body> 

    <PurchaseOrder> 

      <Item count = 100> Postit sticky notes </Item> 

      <Item count = 200> Stapler </Item> 

     <PurchaseOrder> 

</SOAP-ENV: body> 

</SOAP-ENV: Envelope> 
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Appendix B 
A UEF-Formatted File 

 

#ADED Ascii Dump of Event Data file 

#Version 1.0 

#2180 

#1090341567 

6a6a7775 

4 

4 

25 

00000010 

3 

0 00000000 

1 01000000 

2 02000000 

3 

0 0 280e74ffffffef 

1 1 54ffffffbc042b 

2 2 03ffffffaeffffffefffffffdf 

1 0 0 -1 -1 1 

1 1 0 -1 -1 1 

1 2 0 -1 -1 1 

2 0 1 -1 0 1 

3 1 1 0 1 1 

2 1 2 -1 0 1 

3 2 1 1 2 1 

2 2 2 -1 0 1 

3 1 3 2 2 1 
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6 1 4 -1 -1 1 

2 0 2 -1 0 2 

3 1 5 0 2 2 

2 1 6 -1 0 2 

3 2 3 1 6 2 

2 2 4 -1 0 2 

3 1 7 2 4 2 

6 1 8 -1 -1 2 
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Appendix C 
Sample Testbed Scripts 

Script 1 
#begin 

start 0 "trace 1" 

start 1 "trace 2" 

start 2 "trace 3" 

start 3 "trace 4" 

start 4 "trace 5" 

start 5 "trace 6" 

start 6 "trace 7" 

start 7 "trace 8" 

start 8 "trace 9" 

start 9 "trace 10" 

start 10 "trace 11" 

start 11 "trace 12" 

# Do a simple synchronous RPC without task data 

0 1        

1 2 

2 3 

3 4  

4 5 

5 4 

4 3 

3 2        

2 1  

1 0 
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#Do a chain of simple synchronous RPCs with task 

0 1 t: 1234567890abcdef 

4 

4 

4 

4 

4 5 

4 5 

1 2 t: 1234567890abcdef 

2 3 t: 1234567890abcdef 

3 4 t: 1234567890abcdef 

4 5 t: 1234567890abcdef 

5 4 t: 1234567890abcdef 

4 3 t: 1234567890abcdef 

5 4 

3 2 t: 1234567890abcdef 

2 1 t: 1234567890abcdef 

1 0 t: 1234567890abcdef 

#Do another chain of simple synchronous RPCs with task     

6 7 t: 9876543210fedcba 

7 8 t: 9876543210fedcba 

8 9 t: 9876543210fedcba 

9 10 t: 9876543210fedcba 

10 11 t: 9876543210fedcba 

11 10 t: 9876543210fedcba 

10 9 t: 9876543210fedcba 

9 8 t: 9876543210fedcba 

8 7 t: 9876543210fedcba 

7 6 t: 9876543210fedcba 

#end 
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Script 2 
#start 

start 0 "trace 1" 

start 1 "trace 2" 

start 2 "trace 3" 

start 3 "trace 4" 

start 4 "trace 5" 

start 5 "trace 6" 

 

async 

#The first set of events without task identifier 

0 1  

1 2  

2  

2 1 

1 0 

 

#The second set of events with task identifer 

0 1 t: abcdef0987654321 

1 2 t: abcdef0987654321 

2 t: abcdef0987654321 

2 1 t: abcdef0987654321 

1 0 t: abcdef0987654321 

 

#The third set of events with task identifier 

3 4 t: fedcba0987654321 

4 5 t: fedcba0987654321 

5 t: fedcba0987654321 

5 4 t: fedcba0987654321 

4 3 t: fedcba0987654321 
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Script 3 
#start 

start 0 "trace 1" 

start 1 "trace 2" 

start 2 "trace 3" 

start 3 "trace 4" 

start 4 "trace 5" 

 

#The first set of events with task identifier 

0 1 t: a1b2c3d4e5f60987 

1 2 t: a1b2c3d4e5f60987 

4 3 t: 9f8e7d6c5b4a0123 

3 2 t: 9f8e7d6c5b4a0123 

2 3 t: 9f8e7d6c5b4a0123 

3 4 t: 9f8e7d6c5b4a0123 

2 1 t: a1b2c3d4e5f60987 

1 0 t: a1b2c3d4e5f60987 

 

#end 
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Appendix D 
Java RMI Sample Codes 

1. RealTime.java 
import java.net.*;  

import java.rmi.*;  

import java.rmi.registry.*;  

import java.rmi.server.*;  

 

public class RealTime extends UnicastRemoteObject  

                      implements RealTimeI  

{  

    public RealTime() throws RemoteException {  

 //        super();  

    }  

 

    public long getRealTime() throws RemoteException {  

               return System.currentTimeMillis();  

    }  

 

    public static void main(String[] args) {  

              try {  

                   RealTime rt = new RealTime();  

                   Naming.rebind("//localhost:1099/RealTime", rt);  

                   System.out.println("RealTime Ready to do Time");  

               } catch (Exception e) {  

                  e.printStackTrace();  

               }  

    }  

} 
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2. PerfectTime.java 
import java.net.*;  

import java.rmi.*;  

import java.rmi.registry.*;  

import java.rmi.server.*;  

 

public class PerfectTime extends UnicastRemoteObject  

                         implements PerfectTimeI  

{  

    public PerfectTime() throws RemoteException {}  

 

    public int getPerfectTime() throws RemoteException {  

       RealTimeI rt; 

       long rtime; 

       try { 

           rt=(RealTimeI)Naming.lookup("//localhost:1099/RealTime"); 

           rtime =  rt.getRealTime(); 

       } catch (Exception e){e.printStackTrace(); return 0;} 

       return 1; 

    }  

 

    public static void main(String[] args) {  

       try {  

            PerfectTime pt = new PerfectTime();  

            Naming.rebind("//localhost:1099/PerfectTime", pt);  

            System.out.println("Ready to do Time");  

       } catch (Exception e) {  

         e.printStackTrace(); }  

    }  

} 
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3. DisplayPerfectTime.java 
import java.rmi.*;  

import java.rmi.registry.*;  

 

public class DisplayPerfectTime {  

 

  public DisplayPerfectTime() {  

                  super();  

  }  

 

  public static void main(String[] args) {  

      try {  

        for (int i = 0; i < 2; i++) { 

           PerfectTimeI t = (PerfectTimeI)Naming.lookup 

                                 ("//localhost:1099/PerfectTime");  

           System.out.println("PerfectTime:"+t.getPerfectTime());  

           }  

      } catch (Exception e) {  

        e.printStackTrace();   

      }  

  } 

} 
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